期刊文献+
共找到856篇文章
< 1 2 43 >
每页显示 20 50 100
基于高效通道注意力的多阶段图像去雨网络
1
作者 李国金 张书铭 +1 位作者 林森 陶志勇 《电光与控制》 CSCD 北大核心 2024年第4期109-114,120,共7页
针对现有图像去雨算法不能更好地保留图像背景细节的问题,提出一种基于高效通道注意力的多阶段图像去雨网络。首先,网络使用3×3卷积提取雨图的浅层特征并传递给高效通道注意力模块,为不同的特征通道分配不同的权重;然后,传递给3个... 针对现有图像去雨算法不能更好地保留图像背景细节的问题,提出一种基于高效通道注意力的多阶段图像去雨网络。首先,网络使用3×3卷积提取雨图的浅层特征并传递给高效通道注意力模块,为不同的特征通道分配不同的权重;然后,传递给3个并行阶段,在前2个阶段中,使用编码-解码器进行多尺度特征提取,减少雨纹信息丢失,其中使用Transformer模块抑制无用信息传递;最后,在第3个阶段使用初始分辨率模块代替编码-解码器,从而保留输出图像的精细特征。实验结果表明,所提算法在Rain800、Rain12、Rain100L和Rain100H公开测试集上的结构相似性分别为0.830、0.968、0.960和0.944,峰值信噪比分别为27.33 dB、35.27 dB、36.79 dB和28.94 dB。所提算法相比于经典和新颖的图像去雨算法,在去除雨纹和恢复背景细节上具有更好的效果。 展开更多
关键词 深度学习 图像去雨 多阶段网络 Transformer模块 通道注意力机制
下载PDF
基于双向LSTM的双任务学习残差通道注意力机制手写签名认证
2
作者 栾方军 陈昱岑 袁帅 《计算机科学与应用》 2024年第3期159-168,共10页
随着人工智能深度学习的发展,网络模型对于在线签名认证系统(Online Signature Verification, OSV)的性能有了显著的提升。然而,如何进一步提高在线手写签名认证的准确性仍然是一个需要解决的问题。为此,本文提出了一种基于双向LSTM的... 随着人工智能深度学习的发展,网络模型对于在线签名认证系统(Online Signature Verification, OSV)的性能有了显著的提升。然而,如何进一步提高在线手写签名认证的准确性仍然是一个需要解决的问题。为此,本文提出了一种基于双向LSTM的双任务学习残差通道注意力机制网络模型,用于改进手写签名认证。该模型使用残差通道注意力机制来学习序列特征的权重以便解决不同通道的权重分配问题,双向长短期记忆网络来缓解在深度神经网络中增加深度时可能带来的梯度消失和梯度爆炸问题。此外,引入多任务学习,包括有监督学习和深度度量学习,以更好地进行特征学习。最终,本文提出了一种基于多任务学习的训练方法,使得OSV系统的准确性进一步提高。所提出的方法在SVC-2004数据集中取得了2.33%的等错误率和97.03%的准确率。实验结果表明,所提出的方法能够有效地提高OSV系统的身份验证准确性。 展开更多
关键词 签名认证 多任务学习 残差通道注意力机制 双向长短期记忆 度量学习
下载PDF
融合高效通道注意力的复杂场景违禁品检测
3
作者 崔丽群 李万欣 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第4期494-505,共12页
针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引... 针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引入到感兴趣池化层(ROIpooling)后,突出违禁品的轮廓、色彩等信息。本文算法在S_DXray数据集上的m AP达到92.06%,改进后网络模型检测精度提高5.06个百分点。有效提高X射线图像违禁品检测的精度和小尺度目标的检测能力,有效避免错检、漏检的现象。 展开更多
关键词 目标检测 X射线图像 残差网络 特征金字塔 K均值聚类 快速区域卷积神经网络 高效通道注意力机制
下载PDF
基于多组多分辨率特征和小波通道注意力的环境声音分类
4
作者 李军 王子壬 +1 位作者 向彦伯 钮焱 《无线电工程》 2024年第8期1862-1870,共9页
针对目前环境声音分类(Environmental Sound Classification, ESC)方法对音频特征提取中反映的时频维度信息不足的问题,提出基于多组多分辨率特征和小波通道注意力的分类方法。采用多组多分辨率特征组成的多特征作为网络输入,通过多组... 针对目前环境声音分类(Environmental Sound Classification, ESC)方法对音频特征提取中反映的时频维度信息不足的问题,提出基于多组多分辨率特征和小波通道注意力的分类方法。采用多组多分辨率特征组成的多特征作为网络输入,通过多组滤波器,多个频率分辨率,在时间和频率维度上实现数据增强,同时实现信息互补。为了更好地衡量各个通道的重要性,针对一维音频图像特征设计了小波通道注意力模块,采用离散小波变换(Discrete Wavelet Transform, DWT)将信号的低频子带和高频子带有效结合,得到通道标量,利用Gram-Schmidt正交化方法使网络在信道注意压缩阶段提取的信息多样化,利用长短期记忆(Long Short Term Memory, LSTM)网络长时间保存信息,提高学习的长期可靠性。实验结果表明,在ESC-10和ESC-50数据集上的分类准确度分别达到了98.7%和93.6%,取得了较好的效果,为音频特征处理提供了一种新的研究思路。 展开更多
关键词 环境声音分类 多组多分辨率特征 小波通道注意力 长短期记忆网络
下载PDF
基于切分通道注意力网络的图像分类算法
5
作者 储岳中 石玉金 +1 位作者 张学锋 刘恒 《工程科学学报》 EI CSCD 北大核心 2024年第10期1856-1863,共8页
通道注意力机制可以有效利用不同的特征通道,通过对特征图的通道进行加权和调整,使得卷积神经网络可以更加关注重要的特征通道,以提高卷积神经网络的分类能力.然而,对于使用全局平均池化来获取通道全局特征的方法,特征图中不同的通道有... 通道注意力机制可以有效利用不同的特征通道,通过对特征图的通道进行加权和调整,使得卷积神经网络可以更加关注重要的特征通道,以提高卷积神经网络的分类能力.然而,对于使用全局平均池化来获取通道全局特征的方法,特征图中不同的通道有极大概率出现相同的均值,使得全局平均池化后的特征缺乏多样性,进一步影响网络分类性能.针对此问题,提出一种切分通道注意力机制来构建模块,该模块对全局平均池化的输出维度进行了扩展,减轻全局平均池化造成的信息丢失,增强了通道注意力中全局平均池化层的特征多样性,然后使用多个一维卷积分别计算通道维度上每个区域的注意力权重.将切分通道注意力机制与多种图像分类网络相结合,在CIFAR-100和ImageNet数据集上进行了图像分类实验.实验结果表明,切分通道注意力机制在保持轻量化的基础上仍然能有效提高模型的精度,并且与其他注意力机制相比也表现出较好的优势. 展开更多
关键词 图像分类 通道注意力 全局平均池化 高效通道注意力 模型解释
下载PDF
引入级联通道注意力的轻量化人体姿态估计 被引量:2
6
作者 林远强 郜辉 +3 位作者 王鹏 吕志刚 李晓艳 王储 《计算机工程与应用》 CSCD 北大核心 2024年第13期219-227,共9页
针对当前人体姿态估计模型在轻量化过程中精度损失严重的问题,以高分辨率网络(HRNet)为基线提出一种引入级联通道注意力的轻量化人体姿态估计模型。构建一种保持内部高分辨率特征的级联通道注意力,学习输入特征各通道的重要性来提高模... 针对当前人体姿态估计模型在轻量化过程中精度损失严重的问题,以高分辨率网络(HRNet)为基线提出一种引入级联通道注意力的轻量化人体姿态估计模型。构建一种保持内部高分辨率特征的级联通道注意力,学习输入特征各通道的重要性来提高模型表征能力;通过设计一种基于MetaFormer结构的轻量级深度卷积变换模块来替换HRNet阶段2、3、4中运算复杂度较高的残差模块;设计一种多尺度特征融合方法减少HRNet原融合方法中的多维特征语义信息损失;采用无偏数据处理来消除关键点热力图编码过程中导致的偏移误差。COCO2017验证集的实验结果表明,所提出的模型同基准模型相比,在AP降低2个百分点的情况下,模型参数量和浮点运算量分别减少了90.2%和83.1%,并且以AP为71.4%的表现在轻量化模型中达到精度最优。 展开更多
关键词 人体姿态估计 轻量化 通道注意力 MetaFormer结构 多尺度特征融合
下载PDF
结合MGCC特征与多尺度通道注意力的环境声深度学习分类方法
7
作者 杨俊杰 丁家辉 +2 位作者 杨柳 冯丽 杨超 《应用声学》 CSCD 北大核心 2024年第3期513-524,共12页
环境声分类技术在家居安全监测、人机语声交互等领域具有关键作用。然而,声源的多样性与混合性给环境声分类方法设计带来了重大挑战。为提高分类准确率与节约计算资源,该文提出一种基于多尺度通道注意力机制的深度学习分类模型。所提模... 环境声分类技术在家居安全监测、人机语声交互等领域具有关键作用。然而,声源的多样性与混合性给环境声分类方法设计带来了重大挑战。为提高分类准确率与节约计算资源,该文提出一种基于多尺度通道注意力机制的深度学习分类模型。所提模型由特征提取模块、多尺度卷积模块、高效通道注意力模块、输出层四部分组成。首先,通过引入加权型梅尔Gammatone频率倒谱系数(MGCC)挖掘环境声频谱幅值与相位结构信息;其次,融合多尺度卷积核与高效通道注意力机制优选出声频关键局部细节和通道特征;最后,在全连接层采用softmax函数映射特征并输出环境声类型的概率值。所提模型在6种环境声的iFLYTEK、10种环境声的Urbansound8k数据集上开展测试验证,分别取得了94%、76.52%、79.24%(iFLYTEK+Urbansound8k)的分类准确率。消融实验结果进一步表明:引入的多尺度卷积模块、通道注意力机制模块对分类准确率的提升贡献率分别接近于3.77%和1.89%。实验还详细对比了7种现有的深度学习分类方法,所提算法在分类准确率上排名第二;另外,在同级别算法中如ResNet18、GoogLeNet,所提算法在模型参数量和计算复杂度方面上实现了进一步的约减。 展开更多
关键词 环境声分类 梅尔Gammatone频率倒谱 多尺度核卷积 高效通道注意力 卷积神经网络
下载PDF
应用小波通道注意力网络的地震数据重建方法
8
作者 刘沛 王长鹏 +2 位作者 董安国 张春霞 张讲社 《石油地球物理勘探》 EI CSCD 北大核心 2024年第1期31-37,共7页
重建缺失的地震道是地震数据处理的关键环节之一。近年来提出了多种基于深度学习理论的地震数据重建方法。然而,这些方法中常用的卷积运算只能捕捉到地震数据的局部特征,没有充分利用全局信息。另外,池化操作也会造成特征图信息的丢失,... 重建缺失的地震道是地震数据处理的关键环节之一。近年来提出了多种基于深度学习理论的地震数据重建方法。然而,这些方法中常用的卷积运算只能捕捉到地震数据的局部特征,没有充分利用全局信息。另外,池化操作也会造成特征图信息的丢失,从而破坏地震反射的细节特征。为此,提出了基于小波通道注意力网络的地震数据重建方法。哈尔(Haar)小波变换能够有效提取信号的多尺度特征,并在上采样过程中避免信息的丢失;高效通道注意力模块通过对不同通道特征图之间的相关性进行建模,能实现全局信息的充分利用。合成和实际地震数据的实验结果表明,与具有代表性的深度学习方法相比,文中所提出的网络模型可以产生更准确的重建结果。 展开更多
关键词 地震数据重建 随机缺失 深度学习 哈尔小波变换 高效通道注意力
下载PDF
基于通道注意力机制的小样本SAR飞机图像分类方法
9
作者 赵一铭 王佩瑾 +2 位作者 刁文辉 孙显 邓波 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期464-476,共13页
合成孔径雷达(Synthetic Aperture Radar,SAR)以其全天候、全天时、高分辨率、大幅宽的特点,成为对地观测的重要手段,图像分类是SAR图像解译的一个重要方向.和光学图像相比,SAR图像的成像机理较复杂,存在较多噪声干扰,导致图像清晰度较... 合成孔径雷达(Synthetic Aperture Radar,SAR)以其全天候、全天时、高分辨率、大幅宽的特点,成为对地观测的重要手段,图像分类是SAR图像解译的一个重要方向.和光学图像相比,SAR图像的成像机理较复杂,存在较多噪声干扰,导致图像清晰度较差、样本标注的难度大,无法保证深度学习算法对样本量的需求,因此,对小样本SAR图像进行图像分类成为当前SAR图像解译领域的重点研究问题之一.基于这一问题展开了基于元学习的SAR图像分类模型的研究,以实现小样本条件下SAR图像的高精度识别.构建基于注意力机制的原型网分类方法,设计了通道注意力模块来自动获取图像特征的重要程度,促进提取对图像分类更有判别力的特征;同时,对模型设计预训练网络,以充分利用已有数据的信息,学习更好的先验信息,提高分类的准确率.在自建的高分辨率SAR图像数据集上对该小样本分类模型进行了实验.消融实验表明,注意力模块和预训练模块对模型的性能均有一定的提升效果.通过对比实验,证明和当前常用的小样本学习方法相比,构建的分类方法能在SAR图像分类中获得较高的准确率,在第一组实验的5-way 1-shot实验中得到的分类精度提高了5.9%,在5-way 5-shot实验中提高了1.92%. 展开更多
关键词 SAR图像分类 元学习 小样本学习 通道注意力模块 预训练
下载PDF
基于高效通道注意力机制和特征融合网络的冠心病诊断算法研究
10
作者 郭卫涛 帕孜来·马合木提 张洪春 《计算机应用与软件》 北大核心 2024年第1期190-197,共8页
针对冠心病重要特征不确定、诊断模型预测性能低等因素而导致冠心病早期诊断精度低的问题,提出一种基于高效通道注意力机制和特征融合的网络。通过XGBoost(eXtreme Gradient Boosting)来确定冠心病重要特征,设计数据生成图片的特征组合... 针对冠心病重要特征不确定、诊断模型预测性能低等因素而导致冠心病早期诊断精度低的问题,提出一种基于高效通道注意力机制和特征融合的网络。通过XGBoost(eXtreme Gradient Boosting)来确定冠心病重要特征,设计数据生成图片的特征组合算法以适用该模型;为提高诊断模型预测性能,采用可以提升模型学习能力和特征利用率的高效通道注意力机制模块和特征融合模块。实验结果表明,在UCI克利夫兰心脏病数据集上,与其他诊断算法相比,该算法优于传统机器学习方法,预测精度可达100%且稳定性好。 展开更多
关键词 冠心病 早期诊断 特征组合算法 特征融合 高效通道注意力
下载PDF
全局通道注意力增强的毫米波图像目标检测
11
作者 蒋甜甜 叶学义 +2 位作者 李刚 杨梦豪 陈华华 《电子技术应用》 2024年第3期19-25,共7页
针对主动毫米波图像中目标与背景纹理区分度较低导致隐匿目标漏检问题,并根据安检实时性要求,提出一种基于全局通道注意力增强的主动毫米波图像目标检测方法。该方法以YOLOv5s为载体,在坐标注意力位置方向上引入全局通道注意模块,增强... 针对主动毫米波图像中目标与背景纹理区分度较低导致隐匿目标漏检问题,并根据安检实时性要求,提出一种基于全局通道注意力增强的主动毫米波图像目标检测方法。该方法以YOLOv5s为载体,在坐标注意力位置方向上引入全局通道注意模块,增强对隐匿目标全局通道信息的关注,从而提升在隐匿目标与背景纹理区分度较低时的检测能力;再利用K-means++聚类算法重新生成适合毫米波图像目标检测的锚框。实验结果表明,无论是阵列图像数据集还是线扫图像数据集,该方法增强了对隐匿目标的特征注意,提高了召回率,在满足安检实时性的前提下,提升了检测性能。通过增加少量参数,在阵列图像数据集上,精度、召回率和mAP@.5达到了92.0%、90.93%和95.32%;在线扫图像数据集上,精度、召回率和mAP@.5达到了94.65%、92.67%和97.73%。平均单张图像推理时间在两个数据集上均达到1 ms,满足实时性要求。 展开更多
关键词 主动毫米波图像目标检测 全局通道注意力增强 K-means++ 注意力机制
下载PDF
基于多尺度频率通道注意力融合的声纹库构建方法
12
作者 陈彤 杨丰玉 +2 位作者 熊宇 严荭 邱福星 《计算机应用》 CSCD 北大核心 2024年第8期2407-2413,共7页
为解决声纹识别准确性易受外部因素影响的问题,提出一种基于多尺度频率通道注意力融合时延神经网络(MFCA-TDNN)模型的声纹识别算法。MFCA-TDNN在ECAPA-TDNN(Emphasized Channel Attention Propagation Aggregation Time Delay Neural Ne... 为解决声纹识别准确性易受外部因素影响的问题,提出一种基于多尺度频率通道注意力融合时延神经网络(MFCA-TDNN)模型的声纹识别算法。MFCA-TDNN在ECAPA-TDNN(Emphasized Channel Attention Propagation Aggregation Time Delay Neural Network)的基础上作了3点改进,包括:加入了多尺度频率通道注意力前端以从话语中获得高分辨率的特征表示、添加了多尺度通道注意力模块结合局部和全局的特征以融合多尺度信息、嵌入了特征注意力融合模块为多尺度的融合特征加权。这些改进使模型更好地利用多尺度的时频信息,提高识别能力。实验结果表明,与ECAPA-TDNN模型相比,MFCA-TDNN模型等错误率(EER)和最小检测代价函数(minDCF)分别下降5.9%和7.9%;最低的EER可达到3.83%,最低的minDCF可达到0.2202。 展开更多
关键词 声纹库 时延神经网络 多尺度特征提取 频率通道注意力 特征注意力融合
下载PDF
基于梯度可感知通道注意力模块的红外小目标检测前去噪网络
13
作者 林再平 罗伊杭 +5 位作者 李博扬 凌强 郑晴 杨晶贻 刘丽 吴京 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第2期254-260,共7页
红外图像去噪在军事及民用领域应用广泛。现有基于深度学习的图像去噪方法主要为可见光图像设计,此类方法容易过度平滑图像细节,从而导致弱小目标丢失,为后续的检测任务带来困难。为了在去除噪声的同时保留好红外图像中的目标信息,本文... 红外图像去噪在军事及民用领域应用广泛。现有基于深度学习的图像去噪方法主要为可见光图像设计,此类方法容易过度平滑图像细节,从而导致弱小目标丢失,为后续的检测任务带来困难。为了在去除噪声的同时保留好红外图像中的目标信息,本文提出了一种基于梯度可感知通道注意力模块的红外弱小目标检测前去噪网络。该网络首先采用编码器-解码器结构来去除图像中的加性噪声,然后通过梯度可感知通道注意力模块对图像高频区域进行自适应增强,有效保持红外弱小目标的响应强度。此外,本文提出了领域第一个包含3981张含噪声的红外图像数据集。实验结果表明,该网络能够在有效去除加性噪声的同时避免过度平滑,很好地保留了红外图像中的目标信息,最终实现了在含噪声环境下的高鲁棒性红外弱小目标检测。 展开更多
关键词 红外小目标 检测前去噪 梯度可感知通道注意力模块
下载PDF
结合贝叶斯优化及通道注意力的双端优化时序式风功率预测模型
14
作者 荆志宇 李培强 林文婷 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期39-47,59,共10页
针对现有风功率时序预测模型数据端缺少参数优化以及模型端缺少结构优化的问题,提出一种双端优化时序式风功率预测模型。首先,利用贝叶斯优化对数据端参数进行高效搜索寻优;然后,利用通道注意力和卷积神经网络构建特征提取模块,增强模... 针对现有风功率时序预测模型数据端缺少参数优化以及模型端缺少结构优化的问题,提出一种双端优化时序式风功率预测模型。首先,利用贝叶斯优化对数据端参数进行高效搜索寻优;然后,利用通道注意力和卷积神经网络构建特征提取模块,增强模型对输入影响因素重要性的学习;最后,利用双向长短期记忆模型对先前提取的特征进行精准拟合。研究结果表明,所提出模型在各预测场景下均能很好地把握风功率变化趋势,显著提升了预测精度。 展开更多
关键词 时序式风功率预测 双端优化 贝叶斯优化 通道注意力
下载PDF
融合风电动态特征与通道注意力的超短期风速混合预测
15
作者 柳璞 王晓霞 《电力科学与工程》 2024年第8期54-62,共9页
准确的风速预测对于保障电网的稳定性和提升运行效率至关重要。为了提高预测的准确性,提出一种融合风电动态特征与通道注意力的超短期风速预测混合模型。首先,考虑气象因素对风速变化的影响,融合气象数据的静态和动态特征构建特征矩阵,... 准确的风速预测对于保障电网的稳定性和提升运行效率至关重要。为了提高预测的准确性,提出一种融合风电动态特征与通道注意力的超短期风速预测混合模型。首先,考虑气象因素对风速变化的影响,融合气象数据的静态和动态特征构建特征矩阵,深入挖掘影响风速的关键潜在因素。然后,采用时变滤波经验模态分解对原始风速进行初步分解,随后应用变分模态分解对高频分量进一步分解,以降低数据的不稳定性并增强模型的可预测性。其次,为每个子序列分别构建双向长短期记忆网络预测模型,并引入高效通道注意力机制,以自适应地为多通道特征信息分配权重,使模型能够集中于关键特征信息,从而提高模型的预测精度。最后,通过综合各子模型输出得到最终的风速预测值。实例分析表明,所提模型具有较好的预测精度和鲁棒性。 展开更多
关键词 风速预测 动态特征 时变滤波经验模态分解 变分模态分解 高效通道注意力
下载PDF
高效通道注意力结合卷积神经网络的近红外光谱分析模型研究
16
作者 王妞 宦克为 +2 位作者 傅钲淇 刘赋伟 王迪 《长春理工大学学报(自然科学版)》 2024年第1期16-22,共7页
近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光... 近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光谱分析模型(CNNECANet),该模型由8个一维卷积层、1个ECA模块、4个最大池化层、1个展平层、2个全连接层和1个参数优化器组成。ECA模块由1个全局平均池化、1个一维卷积层和1个Sigmoid激活函数组成。以啤酒、牛奶、柴油、谷物的近红外光谱公共数据为例,将CNNECANet与常用建模方法进行比较,CNNECANet比PLS的预测精度分别提高了30.3%、14.1%、29.5%、48.4%;CNNECANet比SVR的预测精度分别提高了33.5%、17.6%、39.0%、50.0%;CNNECANet比BP神经网络模型的预测精度分别提高了80.0%、29.0%、7.2%、42.7%。该模型具有更好的预测精度和鲁棒性,解决了传统近红外光谱建模算法容易出现过拟合、模型泛化性差等问题。 展开更多
关键词 近红外光谱 卷积神经网络 高效通道注意力 预测模型
下载PDF
基于通道注意力与光照权重的无监督低照度图像增强
17
作者 杨猛 杜晓刚 +1 位作者 张学军 孙浩轩 《软件导刊》 2024年第7期167-173,共7页
现有部分无监督低照度图像增强方法在增强图像曝光不足的区域时会降低其高光区域亮度,导致增强后的图像出现伪影;单一的TV损失既无法区别照明特征图的细节,还会忽略照明特征图边缘明暗度差异突出的地区,导致光晕现象的产生。为此,提出... 现有部分无监督低照度图像增强方法在增强图像曝光不足的区域时会降低其高光区域亮度,导致增强后的图像出现伪影;单一的TV损失既无法区别照明特征图的细节,还会忽略照明特征图边缘明暗度差异突出的地区,导致光晕现象的产生。为此,提出一种基于通道注意力与光照权重的无监督低照度图像增强方法 VARRNet。首先,VARRNet将图像转化为HSV空间,将V空间与Retinex理论结合以避免损失信息;其次,为了防止在亮度增强过程中生成伪影,设计了一个亮度估计网络引入通道注意力ECA分配输入特征图的权重,以恢复曝光不足区域的亮度,并有效保持高光区域的亮度;最后,在亮度估计网络中结合TV损失与光照分量权重来保留增强后特征图的丰富细节信息,消除强边缘处的光晕。在与当前流行的5个低照度图像增强方法进行比较实验发现,VARRNet在亮度增强、细节保留、色彩恢复、伪影抑制和光晕去除等方面均取得了更好的可视化效果。 展开更多
关键词 无监督学习 RETINEX 低照度图像增强 通道注意力 照明平滑度
下载PDF
基于通道注意力机制和多路径深度卷积的混合型晶圆缺陷分类
18
作者 范胜娇 王红成 《东莞理工学院学报》 2024年第5期50-57,共8页
晶圆图缺陷的准确分类对改进制造工艺具有至关重要的作用。相比于单一缺陷,混合缺陷具有特征复杂、种类繁多的特点,更加符合真实工业制造情况。为了有效识别并分类混合缺陷,提出一种结合通道注意力机制和多路径深度卷积神经网络的方法... 晶圆图缺陷的准确分类对改进制造工艺具有至关重要的作用。相比于单一缺陷,混合缺陷具有特征复杂、种类繁多的特点,更加符合真实工业制造情况。为了有效识别并分类混合缺陷,提出一种结合通道注意力机制和多路径深度卷积神经网络的方法。此方法在多路径深度卷积神经网络支路上增加通道注意力机制,以关注混合型晶圆图的详细特征。在38类缺陷真实数据集上的实验结果表示,模型在精度方面优于一些现有的深度学习模型,其平均正确率高达97.67%,可以有效分类晶圆图混合缺陷。 展开更多
关键词 计算机视觉 晶圆缺陷识别 深度学习 通道注意力机制 多路径深度卷积
下载PDF
基于双通道注意力机制的AE-BIGRU交通流预测模型
19
作者 黄艳国 何烜 杨仁峥 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期1774-1782,共9页
交通流预测是智能交通系统的关键。针对目前交通流数据复杂的时空关联性以及自身的不确定性,为准确预测高速公路交通流并缓解交通拥堵问题,提出以自编码器网络(AE)和双向门控循环单元(BIGRU)相结合的深度学习组合预测模型(AE-BIGRU),并... 交通流预测是智能交通系统的关键。针对目前交通流数据复杂的时空关联性以及自身的不确定性,为准确预测高速公路交通流并缓解交通拥堵问题,提出以自编码器网络(AE)和双向门控循环单元(BIGRU)相结合的深度学习组合预测模型(AE-BIGRU),并在此基础上引入双通道注意力机制进行模型训练。将预处理后的数据采用滑动窗口的方式作为参数输入模型,通过AE提取交通流的空间特征,得到输入信息特征的最优抽象表示;利用BIGRU从前向和后向传播中获取信息,充分提取交通流的时间相关特征,更全面地捕捉时间演变规律;最后结合双通道注意力机制,增强预测模型的特征提取能力,最大限度地保留特征信息,提升模型的预测精度,从而得到最终短时流量的预测目标值。为验证模型的适用性,采用多组短时交通流数据进行仿真实验,与其他基准模型对比发现:该交通流预测模型能够有效捕获交通流的动态时空特征,加强关键信息的提取,所预测的流量更加接近真实值,具有良好的泛化能力。其中测试集的均方根误差值下降了约0.061~0.604,平均绝对误差值下降了约0.025~0.512,相关系数值R2提高了约0.007~0.062。研究结果表明,随着预测步长的增加,该实验模型在交通流数据的时间特性上仍能表现出稳定的预测性能,所建的组合预测模型在预测精度和鲁棒性方面表现出更高水平。 展开更多
关键词 智能交通 交通流预测 AE-BIGRU模型 深度学习 通道注意力机制
下载PDF
融合卷积通道注意力的遥感图像目标检测方法
20
作者 王怀济 李广明 +2 位作者 张红良 申京傲 吴京 《计算机工程与应用》 CSCD 北大核心 2024年第2期200-210,共11页
针对遥感目标检测中,目标分布不均匀、排列杂乱、大长宽比和尺寸变化剧烈等导致目标定位困难的问题,提出了一种融合卷积通道注意力的旋转目标检测方法。基于k-means进行改进,设计了在最优解下增加聚类簇之间距离的锚框设计方法;基于YOL... 针对遥感目标检测中,目标分布不均匀、排列杂乱、大长宽比和尺寸变化剧烈等导致目标定位困难的问题,提出了一种融合卷积通道注意力的旋转目标检测方法。基于k-means进行改进,设计了在最优解下增加聚类簇之间距离的锚框设计方法;基于YOLOv5进行改进,设计融合卷积通道注意力的网络模型,增强主干网络传达给特征金字塔顶层和底层的语义和定位特征;设计包含覆盖面积、中心点距离、宽高比和角度损失四种要素的目标框损失函数;优化YOLOv5的目标框宽高回归函数,自适应生成回归预测范围。实验在两个遥感公共数据集UCAS-AOD和HRSC2016上分别与5种具有代表性的方法进行比较,在UCAS-AOD数据集上,平均精度mAP达到了95.9%,相比于CSL方法,mAP提升了0.8个百分点;在HRSC2016数据集上,平均精度mAP达到了96.3%,速度FPS达到了77.5,相比于R3Det方法,mAP提升了0.3个百分点,FPS提升了5.46倍。实验结果表明,方法的整体性能超过了近年来一些代表性的方法,在两个遥感数据集中验证了方法的有效性。 展开更多
关键词 旋转目标检测 YOLO 锚框 卷积通道注意力 回归函数优化 损失函数重构
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部