针对果、茶园规模不断扩张并逐渐向智能农业机械化发展的趋势以及常用道路语义分割数据集缺少果、茶园道路场景等问题,将语义分割技术应用到部分果、茶园道路中,以实现对果、茶园道路的像素级分割。以道路、人和车为分类对象,建立果、...针对果、茶园规模不断扩张并逐渐向智能农业机械化发展的趋势以及常用道路语义分割数据集缺少果、茶园道路场景等问题,将语义分割技术应用到部分果、茶园道路中,以实现对果、茶园道路的像素级分割。以道路、人和车为分类对象,建立果、茶园道路场景图像数据集(包括6032张图像),将数据集按照9∶1比例随机划分为训练集(5429张图像)和测试集(603张图像)。以PSPNet(pyramid scene parsing network,金字塔场景解析网络)分割模型为基础进行优化,构建MS-PSPNet语义分割模型;训练结果显示,MS-PSPNet模型的MIoU(mean intersection over union,平均交并比)为83.41%,FPS(frames per second,每秒传输帧数)为22.31。将MS-PSPNet模型应用在果、茶园不同道路条件和光照强度下进行现场试验,并进行准确度评估,结果显示,MS-PSPNet模型类别MPA(mean pixel accuracy),像素准确率均超过92%,MIoU在除非硬化道路条件情况均超过91%,表明MS-PSPNet模型在果、茶园道路识别中具有较好的有效性和适用性。展开更多
为解决自主移动机器人非结构化道路识别检测准确性、鲁棒性及实时性的问题,提出一种基于感兴趣区域(Region of Interest,ROI)与多层感知器(Multi-Layer Perceptron,MLP)为核心的自监督在线修正算法.首先,通过ROI算法规定被处理图像的有...为解决自主移动机器人非结构化道路识别检测准确性、鲁棒性及实时性的问题,提出一种基于感兴趣区域(Region of Interest,ROI)与多层感知器(Multi-Layer Perceptron,MLP)为核心的自监督在线修正算法.首先,通过ROI算法规定被处理图像的有效计算区域;其次,利用多层感知器对样本数据进行训练,将感兴趣区域按相应特征实现分类处理,并对分类区域进行形态学处理及特征提取处理,筛选出有效的行驶区域;最后,通过自监督在线修正算法替换错误处理结果,进一步保障道路分类识别的准确性.实验结果表明,改进算法能准确地识别出环境中的道路区域,具有良好的实时性与可靠性.展开更多
文摘针对果、茶园规模不断扩张并逐渐向智能农业机械化发展的趋势以及常用道路语义分割数据集缺少果、茶园道路场景等问题,将语义分割技术应用到部分果、茶园道路中,以实现对果、茶园道路的像素级分割。以道路、人和车为分类对象,建立果、茶园道路场景图像数据集(包括6032张图像),将数据集按照9∶1比例随机划分为训练集(5429张图像)和测试集(603张图像)。以PSPNet(pyramid scene parsing network,金字塔场景解析网络)分割模型为基础进行优化,构建MS-PSPNet语义分割模型;训练结果显示,MS-PSPNet模型的MIoU(mean intersection over union,平均交并比)为83.41%,FPS(frames per second,每秒传输帧数)为22.31。将MS-PSPNet模型应用在果、茶园不同道路条件和光照强度下进行现场试验,并进行准确度评估,结果显示,MS-PSPNet模型类别MPA(mean pixel accuracy),像素准确率均超过92%,MIoU在除非硬化道路条件情况均超过91%,表明MS-PSPNet模型在果、茶园道路识别中具有较好的有效性和适用性。
文摘为解决自主移动机器人非结构化道路识别检测准确性、鲁棒性及实时性的问题,提出一种基于感兴趣区域(Region of Interest,ROI)与多层感知器(Multi-Layer Perceptron,MLP)为核心的自监督在线修正算法.首先,通过ROI算法规定被处理图像的有效计算区域;其次,利用多层感知器对样本数据进行训练,将感兴趣区域按相应特征实现分类处理,并对分类区域进行形态学处理及特征提取处理,筛选出有效的行驶区域;最后,通过自监督在线修正算法替换错误处理结果,进一步保障道路分类识别的准确性.实验结果表明,改进算法能准确地识别出环境中的道路区域,具有良好的实时性与可靠性.