期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于遥感多参数和CNN-Transformer的冬小麦单产估测 被引量:2
1
作者 王鹏新 杜江莉 +3 位作者 张悦 刘峻明 李红梅 王春梅 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期173-182,共10页
为了提高冬小麦单产估测精度,改善估产模型存在的高产低估和低产高估等现象,以陕西省关中平原为研究区域,选取旬尺度条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)为遥感特征参数,结合卷积神经网络(CNN)局部特... 为了提高冬小麦单产估测精度,改善估产模型存在的高产低估和低产高估等现象,以陕西省关中平原为研究区域,选取旬尺度条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)为遥感特征参数,结合卷积神经网络(CNN)局部特征提取能力和基于自注意力机制的Transformer网络的全局信息提取能力,构建CNN-Transformer深度学习模型,用于估测关中平原冬小麦产量。与Transformer模型(R^(2)为0.64,RMSE为465.40 kg/hm^(2),MAPE为8.04%)相比,CNN-Transformer模型具有更高的冬小麦单产估测精度(R^(2)为0.70,RMSE为420.39 kg/hm^(2),MAPE为7.65%),能够从遥感多参数中提取更多与产量相关的信息,且对于Transformer模型存在的高产低估和低产高估现象均有所改善。基于5折交叉验证法和留一法进一步验证了CNN-Transformer模型的鲁棒性和泛化能力。此外,基于CNN-Transformer模型捕获冬小麦生长过程的累积效应,分析逐步累积旬尺度输入参数对产量估测的影响,评估模型对于冬小麦不同生长阶段的累积过程的表征能力。结果表明,模型能有效捕捉冬小麦生长的关键时期,3月下旬至5月上旬是冬小麦生长的关键时期。 展开更多
关键词 冬小麦 作物估产 遥感多参数 卷积神经网络 Transformer模型
下载PDF
基于遥感多参数和IPSO-WNN的冬小麦单产估测
2
作者 王鹏新 李明启 +3 位作者 张悦 刘峻明 朱健 张树誉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期154-163,共10页
冬小麦是我国的主要粮食作物之一。为进一步准确地估测冬小麦产量,以陕西省关中平原为研究区域,选取冬小麦主要生育期与水分胁迫和光合作用等密切相关的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感... 冬小麦是我国的主要粮食作物之一。为进一步准确地估测冬小麦产量,以陕西省关中平原为研究区域,选取冬小麦主要生育期与水分胁迫和光合作用等密切相关的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感特征参数,采用改进的粒子群算法优化小波神经网络(IPSO-WNN)以改善梯度下降方法易陷入局部最优的缺陷,并构建冬小麦产量估测模型。结果表明,IPSO-WNN模型的决定系数R2为0.66,平均绝对百分比误差(MAPE)为7.59%,相比于BPNN(R2=0.46,MAPE为11.80%)与WNN(R2=0.52,MAPE为9.80%),IPSO-WNN能够进一步提高模型的精度、增强模型的鲁棒性。采用灵敏度分析的方法探究对冬小麦产量影响较大的输入参数,结果发现,抽穗-灌浆期的FPAR对冬小麦产量影响最大,其次拔节期的VTCI、抽穗-灌浆期和乳熟期的LAI以及返青期和拔节期的FPAR对冬小麦产量的影响较大。通过IPSO-WNN输出获取冬小麦综合监测指数I,构建I与统计单产之间的估产模型以估测关中平原冬小麦单产,结果显示,估测单产与统计单产之间的R2为0.63,均方根误差(RMSE)为505.50 kg/hm^(2),相比于前人的研究较好地解决了估产模型存在的“低产高估”的问题,因此,本文基于IPSO-WNN构建的估产模型能够较准确地估测关中平原冬小麦产量。 展开更多
关键词 冬小麦 产量估测 粒子群优化 小波神经网络 遥感多参数
下载PDF
基于遥感多参数和门控循环单元网络的冬小麦单产估测 被引量:7
3
作者 王鹏新 王婕 +3 位作者 田惠仁 张树誉 刘峻明 李红梅 《农业机械学报》 EI CAS CSCD 北大核心 2022年第9期207-216,共10页
为进一步准确、实时监测冬小麦长势并估测其产量,以陕西省关中平原为研究区域,选取冬小麦旬或生育时期尺度的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感特征参数,分别构建不同时间尺度的单参数、双... 为进一步准确、实时监测冬小麦长势并估测其产量,以陕西省关中平原为研究区域,选取冬小麦旬或生育时期尺度的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感特征参数,分别构建不同时间尺度的单参数、双参数和多参数的门控循环单元(GRU)神经网络模型,并模拟得到冬小麦长势综合监测指数I,结果表明,旬尺度的模型精度总体高于生育时期尺度的模型精度。基于5折交叉验证法进一步验证旬尺度多参数GRU模型的鲁棒性,并构建I与统计单产之间的线性回归模型以估测冬小麦单产,结果显示,冬小麦估测单产与统计单产的决定系数(R^(2))为0.62,均方根误差(RMSE)为509.08 kg/hm^(2),平均相对误差(MRE)为9.01%,相关性达到极显著水平(P<0.01),表明旬尺度的多参数估产模型能够较准确地估测关中平原冬小麦产量,且产量分布呈现西高东低的空间特性和整体保持稳定且平稳增长的年际变化特征。此外,基于GRU模型捕获冬小麦生长的累积效应,分析在连续旬中逐步输入参数对产量估测的影响,结果显示,模型具有识别冬小麦关键生长阶段的能力,3月下旬至4月下旬是冬小麦生长的关键时期。 展开更多
关键词 冬小麦 长势监测 估产 遥感多参数 时间尺度 门控循环单元
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部