We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously intera...We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.展开更多
Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed m...Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.展开更多
基金Supported by the Natural Science Foundation of Hunan Province under Grant No.06jj50014Key Project Foundation of the Education Commission of Hunan Province under Grant No.06A055the Young Core Teachers Foundation of Hunan Provincial Education Department
文摘We propose a simple scheme to not only generate GHZ states and W states of the multiparticle but also form a new category of multiparticle entangled states by letting the A-type three-level atoms simultaneously interacting with a coherent cavity field followed by the selective measurements on the cavity mode. We investigate the influence of the cavity dissipation on the generated entangled state and discuss the experimental feasibility of our scheme. It is shown that the intensity of the coherent cavity field plays an instructive role in contribution to state preparation process while the cavity decay and the detuning between the atoms and cavity mode result in the deterioration of the generated entangled state.
基金supported by the National Basic Research Program of China(Grant No. 2009CB929302)the National Natural Science Foundation of China (Grant No. 91121015)+1 种基金the Ministry of Education of China (GrantNo. B06011)the U.S. National Science Foundation (Grant No. PHY-0925174)
文摘Kitaev model has both Abelian and non-Abelian anyonic excitations. It can act as a starting point for topological quantum compu- tation. However, this model Hamiltonian is difficult to implement in natural condensed matter systems. Here we propose a quantum simulation scheme by constructing the Kitaev model Hamiltonian in a lattice of coupled cavities with embedded A-type three-level atoms. In this scheme, several parameters are tunable, for example, via external laser fields. Importantly, our scheme is based on currently existing technologies and it provides a feasible way of realizing the Kitaev model to explore topological excitations.