The transverse Ward-Takahashi(W-T) realtion for the Vector vertex in quantum filed theory is derived by calculation the coul of the time-ordered product of the three-point function inclduing the vector current operato...The transverse Ward-Takahashi(W-T) realtion for the Vector vertex in quantum filed theory is derived by calculation the coul of the time-ordered product of the three-point function inclduing the vector current operator.This provides the constraint on the transverse part of the vertex.By combining the transverse and normal (longitudinal)W-T identities,we obtain the expression for the full vector vertex function.展开更多
In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and n...In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.展开更多
We study the random motion of a charged test particle with a normal classical constant velocity in a spacetime with a perfectly reflecting plane boundary and calculate both the velocity and position dispersions of the...We study the random motion of a charged test particle with a normal classical constant velocity in a spacetime with a perfectly reflecting plane boundary and calculate both the velocity and position dispersions of the test particle. Our results show that the dispersions in the normal direction are weakened while those in the parallel directions are strengthened as compared to the classical static case when the test particle classically moves away from the boundary. However, if the classical motion reverses its direction, then the dispersions in the normal direction are reinforced while those in the parallel directions get weakened.展开更多
A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum fie...A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.展开更多
By solving rigorously the relativistic wave equations derived from Bargmann–Wigner equation for arbitrary spin, the relativistic wavefunctions in momentum representation for particles with arbitrary spin are deduced.
By virtue of the parabose squeezed operator, propagator of a parabose parametric amplifier, explicit forms of parabose squeezed number states and normalization factors of excitation states on a parabose squeezed vacuu...By virtue of the parabose squeezed operator, propagator of a parabose parametric amplifier, explicit forms of parabose squeezed number states and normalization factors of excitation states on a parabose squeezed vacuum state are calculated, which generalize the relevant results from ordinary Bose statistics to the parabose case.展开更多
We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given valu...We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given value of qS. By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field, Its corrections on these theories are considered by perturbation up to the second order. The arbitrariness of Ф makes us free to fix it at any stage in the calculation. When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge. When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent. It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not. We suggest to fix the parameter Ф at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.展开更多
The influence of the electron-phonon coupling on the energy of low-lying states of the barrier D<SUP>-</SUP> center, which consists of a positive ion located on the z-axis at a distance from the two-dimens...The influence of the electron-phonon coupling on the energy of low-lying states of the barrier D<SUP>-</SUP> center, which consists of a positive ion located on the z-axis at a distance from the two-dimensional quantum dot plane and two electrons in the dot plane bound by the ion, is investigated at arbitrary strength of magnetic field by making use of the method of few-body physics. Discontinuous ground-state energy transitions induced by the magnetic field are reported. The dependence of the binding energy of the D<SUP>-</SUP> ground state on the quantum dot radius is obtained. A considerable enhancement of the binding is found for the D<SUP>-</SUP> ground state, which results from the confinement of electrons and electron-phonon coupling.展开更多
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and t...We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.展开更多
文摘The transverse Ward-Takahashi(W-T) realtion for the Vector vertex in quantum filed theory is derived by calculation the coul of the time-ordered product of the three-point function inclduing the vector current operator.This provides the constraint on the transverse part of the vertex.By combining the transverse and normal (longitudinal)W-T identities,we obtain the expression for the full vector vertex function.
文摘In the coherent thermal state representation we introduce thermal Wigner operator and find that it is'squeezed' under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.
基金The project supported by the National Natural Science Foundation of China under Grant No. 10575035
文摘We study the random motion of a charged test particle with a normal classical constant velocity in a spacetime with a perfectly reflecting plane boundary and calculate both the velocity and position dispersions of the test particle. Our results show that the dispersions in the normal direction are weakened while those in the parallel directions are strengthened as compared to the classical static case when the test particle classically moves away from the boundary. However, if the classical motion reverses its direction, then the dispersions in the normal direction are reinforced while those in the parallel directions get weakened.
文摘A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.
基金国家自然科学基金,Doctoral Program Founda-tion of Institution of Higher Education of China,国家重点实验室基金,国家重点实验室基金
文摘By solving rigorously the relativistic wave equations derived from Bargmann–Wigner equation for arbitrary spin, the relativistic wavefunctions in momentum representation for particles with arbitrary spin are deduced.
文摘By virtue of the parabose squeezed operator, propagator of a parabose parametric amplifier, explicit forms of parabose squeezed number states and normalization factors of excitation states on a parabose squeezed vacuum state are calculated, which generalize the relevant results from ordinary Bose statistics to the parabose case.
基金Supported by the Nature Science Foundation of China under Grant Nos.10875003 and 10811240152the calculations are supported by CERNET High Performance Computing Center in China
文摘We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given value of qS. By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field, Its corrections on these theories are considered by perturbation up to the second order. The arbitrariness of Ф makes us free to fix it at any stage in the calculation. When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge. When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent. It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not. We suggest to fix the parameter Ф at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.
文摘The influence of the electron-phonon coupling on the energy of low-lying states of the barrier D<SUP>-</SUP> center, which consists of a positive ion located on the z-axis at a distance from the two-dimensional quantum dot plane and two electrons in the dot plane bound by the ion, is investigated at arbitrary strength of magnetic field by making use of the method of few-body physics. Discontinuous ground-state energy transitions induced by the magnetic field are reported. The dependence of the binding energy of the D<SUP>-</SUP> ground state on the quantum dot radius is obtained. A considerable enhancement of the binding is found for the D<SUP>-</SUP> ground state, which results from the confinement of electrons and electron-phonon coupling.
文摘We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.