沙国河等人在CO(A1∏(v=0)~e3∑-(v=1))体系与He, Ne 和Ar碰撞诱导转动传能中首次观测到了量子干涉效应,并测量了干涉度.从理论上进一步研究原子-双原子分子体系碰撞诱导转动传能中量子干涉效应与转动量子数以及能量间隔的关系是十分...沙国河等人在CO(A1∏(v=0)~e3∑-(v=1))体系与He, Ne 和Ar碰撞诱导转动传能中首次观测到了量子干涉效应,并测量了干涉度.从理论上进一步研究原子-双原子分子体系碰撞诱导转动传能中量子干涉效应与转动量子数以及能量间隔的关系是十分必要的.我们考虑长程相互作用势,应用一级玻恩近似和直线轨迹近似,分别计算了CO(A1∏(v=0)~e3∑-(v=1))体系和He, Ne,Ar碰撞诱导转动传能中不同转动量子数以及不同能量间隔下的干涉角,得到了干涉角随转动量子数和能量间隔的变化趋势.这些结果对设计、分析这种类型的实验有一定的指导意义.展开更多
Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study t...Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,展开更多
We introduce the quantum Hadamard operator in continuum state vector space and find that it can be decomposed into a single-mode squeezing operator and a position-momentum mutual transform operator. The two-mode Hadam...We introduce the quantum Hadamard operator in continuum state vector space and find that it can be decomposed into a single-mode squeezing operator and a position-momentum mutual transform operator. The two-mode Hadamard operator in bipartite entangled state representation is also introduced, which involves the two-mode squeezing operator and [η〉 ←→|ξ〉 mutual transformation operator, where [η〉 and |ξ〉 are mutual conjugate entangled states. All the discussions are proceeded by virtue of the IWOP technique.展开更多
Collisional quantum interference (CQI) on rotational energy transfer was observed in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14) system in collision with Na [Chem. Phys. Lett. 318 (2000) 107], and the degree of the inter...Collisional quantum interference (CQI) on rotational energy transfer was observed in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14) system in collision with Na [Chem. Phys. Lett. 318 (2000) 107], and the degree of the interference was measured. The integral interference angle was obtaJned through theoretical calculation. We will research the factors that have effect on collisional quantum interference on rotational energy transfer in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14)-Na system. Basing on the time-dependent first order Born approximation, and taking into account the anlsotroplc Lennard Jones interaction potentials and "straight-line" trajectory approximation, we obtain the factors that have effect on CQI in Na2-Na system, and obtain the relation between the integral interference angle and rotational quantum number.展开更多
The mode specificity plays an important role in understanding the fundamental reaction dynamics. This work reports a theoretical study of the rotational mode specificity of the reactant CHD3(JK) in the prototypical hy...The mode specificity plays an important role in understanding the fundamental reaction dynamics. This work reports a theoretical study of the rotational mode specificity of the reactant CHD3(JK) in the prototypical hydrocarbon oxidation reaction O(3P)+CHD3→OH+CD3. The time-dependent quantum wave packet method combined with a seven-dimensional reduced model is employed to calculate the reaction probability on an accurate potential energy surface. The obtained reaction probability depends on the values of both K and Ktot with PKtot=K=0>PKtot=K=J>PKtot=J,K=0=PKtot=0,K=J. This observation can be well rationalized by the reactant alignment pictures. Rotational excitations of CHD3 up to the angular momentum quantum number J=4 have a very weak enhancement effect on the reaction except for the state (J=4, K=0). In addition, the rotationally excited states of CHD3 with K=0 promote the reaction more than those with K=J. The quantum dynamics calculations indicate that the K=0 enhancements are mainly caused by the contributions from the components with K=Ktot=0. The components correspond to the tumbling rotation of CHD3, which enlarges the range of the reactive initial attack angles.展开更多
When the motion of a particle is constrained, excess terms exist using hermitian form of Cartesian momentum pi (i=1, 2,3) in usual kinetic energy (1/2/μ)∑ pi^2 , and the correct kinetic energy turns out to be (...When the motion of a particle is constrained, excess terms exist using hermitian form of Cartesian momentum pi (i=1, 2,3) in usual kinetic energy (1/2/μ)∑ pi^2 , and the correct kinetic energy turns out to be (1/2μ) ∑1/ fipi f ipi, where fi are dummy factors in classical mechanics and nontrivial in quantum mechanics. In this paper the explicit form of the dummy functions fi is given for a charged rigid planar rotator in the uniform magnetic field with different gauge chosen. Under different gauges, we have different sets of dummy factors. It means that these factors do not have direct observable effect.展开更多
Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-fla...Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconlined quark phase. We include a perturbative QCD correction parameter αs in the CFL quark matter equation of states. It is shown that the CFL quark core with K^0 condensation forms in neutron star matter with the large value of αs. If the small value of αs is taken, hyperons suppress the CFL quark phase and the liP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter as or decreasing the bag constant B and the strange quark mass ms can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter αs.展开更多
In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the c...In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the collision-induced electronic and rotationalenergy transfer theoretically on AB( ~1Π, J) + C(~sl_j) → AB( ~1Π, J′) + C(~sl_(j′)), atheoretical model is presented, based on the time-dependent first-order Born approximation, takinginto account the anisotropic Lennard-Jones interaction potential and 'straight-line' trajectoryapproximation. The changing tendency of the transitional probabilities with the anisotropicparameter is discussed.展开更多
We perform accurate quantum dynamcs calculations on the isomerization of vinylidene-acetylene.Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group,in which the b...We perform accurate quantum dynamcs calculations on the isomerization of vinylidene-acetylene.Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group,in which the basis functions are customized for the double-H transfer process.The A_(1)' and B_(2)'' vinylidene and delocalization states are obtained.The peaks recently observed in the cryo-SEVI spectra are analyzed,and very good agreement for the energy levels is achieved between theory and experiment.The discrepancies of energy levels between our calculations and recent experimental cryo-SEVI spectra are of similar magnitudes to the experimental error bars,or≤30 cm^(-1) excluding those involving the excitation of the CCH_(2) scissor mode.A kind of special state,called the isomerization state,is revealed and reported,which is characterized by large probability densities in both vinylidene and acetylene regions.In addition,several states dominated by vinylidene character are reported for the first time.The present work would contribute to the understanding of the double-H transfer.展开更多
The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, th...The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, the computed isotopic fractionation factors derived from the absorption cross sections of five heavy isotopomers are in good agreement with the experimental results. Relative to the 14NI4N16O isotopomer, the N2 rotational state distributions for the isotopically nitrogen substituted N2O are found to be entirely shifted to higher rotational states. Similar to its isotopic fractionation factors, the N2 rotational state distributions for the asymmetric isotopomers 14N15N16O and 15N14N16O are found to be observably different.展开更多
In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at f...In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.展开更多
文摘沙国河等人在CO(A1∏(v=0)~e3∑-(v=1))体系与He, Ne 和Ar碰撞诱导转动传能中首次观测到了量子干涉效应,并测量了干涉度.从理论上进一步研究原子-双原子分子体系碰撞诱导转动传能中量子干涉效应与转动量子数以及能量间隔的关系是十分必要的.我们考虑长程相互作用势,应用一级玻恩近似和直线轨迹近似,分别计算了CO(A1∏(v=0)~e3∑-(v=1))体系和He, Ne,Ar碰撞诱导转动传能中不同转动量子数以及不同能量间隔下的干涉角,得到了干涉角随转动量子数和能量间隔的变化趋势.这些结果对设计、分析这种类型的实验有一定的指导意义.
基金This work was supported by National Natural Science Foundation of China(No.10374040).
文摘Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,
基金The project supported by National Natural Science Foundation of China under Grant No.10475056
文摘We introduce the quantum Hadamard operator in continuum state vector space and find that it can be decomposed into a single-mode squeezing operator and a position-momentum mutual transform operator. The two-mode Hadamard operator in bipartite entangled state representation is also introduced, which involves the two-mode squeezing operator and [η〉 ←→|ξ〉 mutual transformation operator, where [η〉 and |ξ〉 are mutual conjugate entangled states. All the discussions are proceeded by virtue of the IWOP technique.
基金The project supported by National Natural Science Foundation of China under Grant No. 10374040
文摘Collisional quantum interference (CQI) on rotational energy transfer was observed in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14) system in collision with Na [Chem. Phys. Lett. 318 (2000) 107], and the degree of the interference was measured. The integral interference angle was obtaJned through theoretical calculation. We will research the factors that have effect on collisional quantum interference on rotational energy transfer in Na2(A^1∑u^+,ν=8~b^3∏0u,ν=14)-Na system. Basing on the time-dependent first order Born approximation, and taking into account the anlsotroplc Lennard Jones interaction potentials and "straight-line" trajectory approximation, we obtain the factors that have effect on CQI in Na2-Na system, and obtain the relation between the integral interference angle and rotational quantum number.
基金supported by the National Natural Science Foundation of China (No.21773297 to Ming-hui Yang, No.21703210 to Rui Liu, and No.21603266 to Hong-wei Song)China Postdoctoral Science Foundation funded Project under Grant 2017M610492
文摘The mode specificity plays an important role in understanding the fundamental reaction dynamics. This work reports a theoretical study of the rotational mode specificity of the reactant CHD3(JK) in the prototypical hydrocarbon oxidation reaction O(3P)+CHD3→OH+CD3. The time-dependent quantum wave packet method combined with a seven-dimensional reduced model is employed to calculate the reaction probability on an accurate potential energy surface. The obtained reaction probability depends on the values of both K and Ktot with PKtot=K=0>PKtot=K=J>PKtot=J,K=0=PKtot=0,K=J. This observation can be well rationalized by the reactant alignment pictures. Rotational excitations of CHD3 up to the angular momentum quantum number J=4 have a very weak enhancement effect on the reaction except for the state (J=4, K=0). In addition, the rotationally excited states of CHD3 with K=0 promote the reaction more than those with K=J. The quantum dynamics calculations indicate that the K=0 enhancements are mainly caused by the contributions from the components with K=Ktot=0. The components correspond to the tumbling rotation of CHD3, which enlarges the range of the reactive initial attack angles.
基金The project supported by the Program for New Century Excellent Talents in Universities, Ministry of Education, and the Key Teaching Reform Program of Hunan Province
文摘When the motion of a particle is constrained, excess terms exist using hermitian form of Cartesian momentum pi (i=1, 2,3) in usual kinetic energy (1/2/μ)∑ pi^2 , and the correct kinetic energy turns out to be (1/2μ) ∑1/ fipi f ipi, where fi are dummy factors in classical mechanics and nontrivial in quantum mechanics. In this paper the explicit form of the dummy functions fi is given for a charged rigid planar rotator in the uniform magnetic field with different gauge chosen. Under different gauges, we have different sets of dummy factors. It means that these factors do not have direct observable effect.
基金National Natural Science Foundation of China under Grant Nos.10575005,10435080,10425521,10135030,and 10575123the Key Grant Project of the Ministry of Education under Grant No.305001the CAS Knowledge Innovation Project under Grant No.KJcx2-sw-No2
文摘Deconlinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconlined quark phase. We include a perturbative QCD correction parameter αs in the CFL quark matter equation of states. It is shown that the CFL quark core with K^0 condensation forms in neutron star matter with the large value of αs. If the small value of αs is taken, hyperons suppress the CFL quark phase and the liP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter as or decreasing the bag constant B and the strange quark mass ms can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter αs.
文摘In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the collision-induced electronic and rotationalenergy transfer theoretically on AB( ~1Π, J) + C(~sl_j) → AB( ~1Π, J′) + C(~sl_(j′)), atheoretical model is presented, based on the time-dependent first-order Born approximation, takinginto account the anisotropic Lennard-Jones interaction potential and 'straight-line' trajectoryapproximation. The changing tendency of the transitional probabilities with the anisotropicparameter is discussed.
基金supported by the National Natural Science Foundation of China(No.21973098 and No.22133003)the Youth Innovation Promotion Association CAS(No.2018045)the Beijing National Laboratory for Molecular Sciences。
文摘We perform accurate quantum dynamcs calculations on the isomerization of vinylidene-acetylene.Large-scale parallel computations are accomplished by an efficient theoretical scheme developed by our group,in which the basis functions are customized for the double-H transfer process.The A_(1)' and B_(2)'' vinylidene and delocalization states are obtained.The peaks recently observed in the cryo-SEVI spectra are analyzed,and very good agreement for the energy levels is achieved between theory and experiment.The discrepancies of energy levels between our calculations and recent experimental cryo-SEVI spectra are of similar magnitudes to the experimental error bars,or≤30 cm^(-1) excluding those involving the excitation of the CCH_(2) scissor mode.A kind of special state,called the isomerization state,is revealed and reported,which is characterized by large probability densities in both vinylidene and acetylene regions.In addition,several states dominated by vinylidene character are reported for the first time.The present work would contribute to the understanding of the double-H transfer.
文摘The time-dependent quantum wave packet method is used to study the dynamics of the pho- todissociation processes for the isotopomers 14N14N16O, 14N15N16O, 15N14N16O, 15N15N16O, 14N14N17O, and 14N14N18O. In general, the computed isotopic fractionation factors derived from the absorption cross sections of five heavy isotopomers are in good agreement with the experimental results. Relative to the 14NI4N16O isotopomer, the N2 rotational state distributions for the isotopically nitrogen substituted N2O are found to be entirely shifted to higher rotational states. Similar to its isotopic fractionation factors, the N2 rotational state distributions for the asymmetric isotopomers 14N15N16O and 15N14N16O are found to be observably different.
基金National Natural Science Foundation of China under Grant No.10575050the Research Fund for the Doctoral Program of Higher Education under Grant No.20060284020
文摘In equilibrium statistical field theory, the partition function has fundamental importance. In this paper we propose a direct and general method for calculating the partition function and equation of state of QCD at finite chemical potential. It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant. From this a criterion for the phase transition between the Nambu and the Wigner phases is obtained. This general method is applied to two specific cases: the free quark theory and QCD with a model dressed quark propagator having confinement features. In the first case, the standard Fermi distribution at T = 0 is reproduced. In the second case, we apply the conclusion in previous works to obtain the dressed quark propagator at finite chemical potential and find the unphysical result that the baryon number density vanishes for all values of chemical potential. The reason for this result is discussed.