为了解决带有色厚尾量测噪声的非线性状态估计问题,本文提出了新的鲁棒高斯近似(Gaussian approximate,GA)滤波器和平滑器.首先,基于状态扩展方法将量测差分后带一步延迟状态和白色厚尾量测噪声的非线性状态估计问题,转化成带厚尾量测...为了解决带有色厚尾量测噪声的非线性状态估计问题,本文提出了新的鲁棒高斯近似(Gaussian approximate,GA)滤波器和平滑器.首先,基于状态扩展方法将量测差分后带一步延迟状态和白色厚尾量测噪声的非线性状态估计问题,转化成带厚尾量测噪声的标准非线性状态估计问题.其次,针对量测差分后模型中的噪声尺度矩阵和自由度(Degrees of freedom,DOF)参数未知问题,设计了新的高斯近似滤波器和平滑器,通过建立未知参数和待估计状态的共轭先验分布,并利用变分贝叶斯方法同时估计未知的状态、尺度矩阵、自由度参数.最后,利用目标跟踪仿真验证了本文提出的带有色厚尾量测噪声的鲁棒高斯近似滤波器和平滑器的有效性以及与现有方法相比的优越性.展开更多
量测噪声有限记忆在线估计方法通过对新息序列的实时统计计算,更新系统量测噪声阵 R,增强了滤波器的自适应能力。但量测噪声有限记忆在线估计方法需要在每个滤波周期内对量测噪声阵 R 进行估计并更新统计周期内的量测新息,存在着信息统...量测噪声有限记忆在线估计方法通过对新息序列的实时统计计算,更新系统量测噪声阵 R,增强了滤波器的自适应能力。但量测噪声有限记忆在线估计方法需要在每个滤波周期内对量测噪声阵 R 进行估计并更新统计周期内的量测新息,存在着信息统计与数据更新计算量大的不足。针对此问题,提出了一种基于协方差匹配技术的自适应滤波算法,将协方差匹配技术与量测噪声有限记忆在线估计方法相结合,根据协方差匹配结果,选择性统计量测噪声阵 R。仿真结果表明,简化算法可以在保证滤波精度相当的前提下,减小计算量,提高实时性。展开更多
文摘为了解决带有色厚尾量测噪声的非线性状态估计问题,本文提出了新的鲁棒高斯近似(Gaussian approximate,GA)滤波器和平滑器.首先,基于状态扩展方法将量测差分后带一步延迟状态和白色厚尾量测噪声的非线性状态估计问题,转化成带厚尾量测噪声的标准非线性状态估计问题.其次,针对量测差分后模型中的噪声尺度矩阵和自由度(Degrees of freedom,DOF)参数未知问题,设计了新的高斯近似滤波器和平滑器,通过建立未知参数和待估计状态的共轭先验分布,并利用变分贝叶斯方法同时估计未知的状态、尺度矩阵、自由度参数.最后,利用目标跟踪仿真验证了本文提出的带有色厚尾量测噪声的鲁棒高斯近似滤波器和平滑器的有效性以及与现有方法相比的优越性.
文摘量测噪声有限记忆在线估计方法通过对新息序列的实时统计计算,更新系统量测噪声阵 R,增强了滤波器的自适应能力。但量测噪声有限记忆在线估计方法需要在每个滤波周期内对量测噪声阵 R 进行估计并更新统计周期内的量测新息,存在着信息统计与数据更新计算量大的不足。针对此问题,提出了一种基于协方差匹配技术的自适应滤波算法,将协方差匹配技术与量测噪声有限记忆在线估计方法相结合,根据协方差匹配结果,选择性统计量测噪声阵 R。仿真结果表明,简化算法可以在保证滤波精度相当的前提下,减小计算量,提高实时性。