分析基于内容的音乐信息检索(music information retrieval,MIR),其关键在于特征提取.传统的单特征向量表示方法存在局限性:难以选定用于提取特征的片段或时间窗;只选取音乐片段会丢失一些重要的信息.为了消除局限性,引入多特征向量的...分析基于内容的音乐信息检索(music information retrieval,MIR),其关键在于特征提取.传统的单特征向量表示方法存在局限性:难以选定用于提取特征的片段或时间窗;只选取音乐片段会丢失一些重要的信息.为了消除局限性,引入多特征向量的特征表示方法,在获取音乐的多个声学特征向量的同时,也可以完整地表示该音乐曲目.为了更加准确地计算由多特征向量表示的2个音乐曲目之间的相似度,引入金字塔匹配核技术(pyramid match kernel,PMK)计算不同长度的多特征向量之间的相似度.实验结果表明,PMK技术的引入可以提高MIR的性能.展开更多
提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字...提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字塔型结构,通过适当匹配可以得到正定核函数,该函数具有线性计算复杂度,可以运用于基于核的学习算法.将BSPM嵌入支持向量机对公共数据库中图像目标进行分类,实验结果表明该方法对图像具有良好的分类能力,优于词汇导向的金字塔匹配核和空间金字塔匹配核.展开更多
针对视频检索系统中目标持续移动从而影响检索精度的问题,提出一种基于视频剪辑查询融合时空金字塔匹配(spatio-temporal pyramid matching,STPM)方法。借助基于特征分析和分类的片段编辑检测器将新的视频分割成多个片段,以元数据信息...针对视频检索系统中目标持续移动从而影响检索精度的问题,提出一种基于视频剪辑查询融合时空金字塔匹配(spatio-temporal pyramid matching,STPM)方法。借助基于特征分析和分类的片段编辑检测器将新的视频分割成多个片段,以元数据信息将视频片段存入数据库,利用基于逐帧特征结合弱分类器的boosting算法检测视频片段边界,针对新的查询视频进行分析和线上视频匹配,并利用时空金字塔匹配计算相关反馈值。在中佛罗里达大学(university of central Florida,UCF)数据集和You Tube运动视频上的实验验证了方法的有效性,实验结果表明,方法的平均精度可高达97.6%,相比其他几种较为新颖的匹配方法,取得了更好的检索性能。展开更多
针对现有双目场景流计算方法在大位移、运动遮挡及光照变化等复杂场景下场景流估计的准确性与鲁棒性问题,提出一种基于金字塔块匹配的双目场景流计算方法.首先对双目图像序列进行超像素分割和视差估计,得到图像初始分割结果和视差信息,...针对现有双目场景流计算方法在大位移、运动遮挡及光照变化等复杂场景下场景流估计的准确性与鲁棒性问题,提出一种基于金字塔块匹配的双目场景流计算方法.首先对双目图像序列进行超像素分割和视差估计,得到图像初始分割结果和视差信息,然后建立基于金字塔块匹配的运动模型并采用Ransac随机一致性算法拟合刚性运动模型和最小化重投影算法估计对象运动参数.最后,本文将金字塔块匹配结果作为约束项,联合对象运动参数和超像素平面参数构建基于金字塔块匹配的双目场景流估计能量函数模型,通过最小化能量函数得到最终场景流.实验分别采用KITTI2015(Karlsruhe Institute of Technology and Toyota technological Institute 2015)和MPI-Sintel(Max-Planck Institute and Sintel)数据集测试图像对本文方法和具有代表性场景流算法进行综合对比分析,结果表明本文方法相对于其他对比方法有效提高大位移、运动遮挡以及光照变化情况下场景流估计精度和鲁棒性.展开更多
文摘分析基于内容的音乐信息检索(music information retrieval,MIR),其关键在于特征提取.传统的单特征向量表示方法存在局限性:难以选定用于提取特征的片段或时间窗;只选取音乐片段会丢失一些重要的信息.为了消除局限性,引入多特征向量的特征表示方法,在获取音乐的多个声学特征向量的同时,也可以完整地表示该音乐曲目.为了更加准确地计算由多特征向量表示的2个音乐曲目之间的相似度,引入金字塔匹配核技术(pyramid match kernel,PMK)计算不同长度的多特征向量之间的相似度.实验结果表明,PMK技术的引入可以提高MIR的性能.
文摘提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字塔型结构,通过适当匹配可以得到正定核函数,该函数具有线性计算复杂度,可以运用于基于核的学习算法.将BSPM嵌入支持向量机对公共数据库中图像目标进行分类,实验结果表明该方法对图像具有良好的分类能力,优于词汇导向的金字塔匹配核和空间金字塔匹配核.
文摘针对视频检索系统中目标持续移动从而影响检索精度的问题,提出一种基于视频剪辑查询融合时空金字塔匹配(spatio-temporal pyramid matching,STPM)方法。借助基于特征分析和分类的片段编辑检测器将新的视频分割成多个片段,以元数据信息将视频片段存入数据库,利用基于逐帧特征结合弱分类器的boosting算法检测视频片段边界,针对新的查询视频进行分析和线上视频匹配,并利用时空金字塔匹配计算相关反馈值。在中佛罗里达大学(university of central Florida,UCF)数据集和You Tube运动视频上的实验验证了方法的有效性,实验结果表明,方法的平均精度可高达97.6%,相比其他几种较为新颖的匹配方法,取得了更好的检索性能。
文摘针对现有双目场景流计算方法在大位移、运动遮挡及光照变化等复杂场景下场景流估计的准确性与鲁棒性问题,提出一种基于金字塔块匹配的双目场景流计算方法.首先对双目图像序列进行超像素分割和视差估计,得到图像初始分割结果和视差信息,然后建立基于金字塔块匹配的运动模型并采用Ransac随机一致性算法拟合刚性运动模型和最小化重投影算法估计对象运动参数.最后,本文将金字塔块匹配结果作为约束项,联合对象运动参数和超像素平面参数构建基于金字塔块匹配的双目场景流估计能量函数模型,通过最小化能量函数得到最终场景流.实验分别采用KITTI2015(Karlsruhe Institute of Technology and Toyota technological Institute 2015)和MPI-Sintel(Max-Planck Institute and Sintel)数据集测试图像对本文方法和具有代表性场景流算法进行综合对比分析,结果表明本文方法相对于其他对比方法有效提高大位移、运动遮挡以及光照变化情况下场景流估计精度和鲁棒性.