Fibre-reinforced polymer (FRP) composites were widely utilized in civil engineering structures as the retrofit of reinforced concrete (RC) columns. To design FRP jackets safely and economically, the behaviour of such ...Fibre-reinforced polymer (FRP) composites were widely utilized in civil engineering structures as the retrofit of reinforced concrete (RC) columns. To design FRP jackets safely and economically, the behaviour of such columns should be predicted first. This paper is concerned with the analysis and behaviour of FRP-confined RC circular and rectangular short col- umns subjected to eccentric loading. A simple design-oriented stress-strain model for FRP-confined concrete in a section analysis was first proposed. The accuracy was then proved by two test data. Following that, a parametric study including amount of FRP confinement, FRP strain capacity, unconfined concrete strength and shape of column section is provided. Some conclusions were obtained at the end of the paper. The work here will provide a comprehensive understanding of the behaviour of FRP-confined concrete columns. The simplicity of the model also enables a simple equivalent stress block to be developed for direct use in practical design.展开更多
Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that ...Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
Although several experimental and numerical studies have been carried out on the shear capacity of RC beams retrofitted by carbon or glass fibre-reinforced polymers, there has been little work on hybrid FRP sheet appl...Although several experimental and numerical studies have been carried out on the shear capacity of RC beams retrofitted by carbon or glass fibre-reinforced polymers, there has been little work on hybrid FRP sheet applications, particularly under cyclic loading. In the present research, five RC beams were constructed, and four of which were retrofitted using various schemes of FRP sheets. All beams were subjected to quasi-static cyclic loading in an attempt to represent the effect repetitive loading. The ultimate load, and deflection response at mid-span of the beams were measured and compared with predictions of a computational model based on finite element analysis. Experimental results demonstrated that hybrid applications of FRP sheets can improve the shear performance of retrofitted RC beams and increase the ultimate strain of the FRP sheets at failure. The results of the computational model were in reasonable agreement with the corresponding experimental results.展开更多
文摘Fibre-reinforced polymer (FRP) composites were widely utilized in civil engineering structures as the retrofit of reinforced concrete (RC) columns. To design FRP jackets safely and economically, the behaviour of such columns should be predicted first. This paper is concerned with the analysis and behaviour of FRP-confined RC circular and rectangular short col- umns subjected to eccentric loading. A simple design-oriented stress-strain model for FRP-confined concrete in a section analysis was first proposed. The accuracy was then proved by two test data. Following that, a parametric study including amount of FRP confinement, FRP strain capacity, unconfined concrete strength and shape of column section is provided. Some conclusions were obtained at the end of the paper. The work here will provide a comprehensive understanding of the behaviour of FRP-confined concrete columns. The simplicity of the model also enables a simple equivalent stress block to be developed for direct use in practical design.
基金Project(JC11-02-18) supported by the Scientific Foundation of National University of Defense Technology, ChinaProject(11202236) supported by the National Natural Science Foundation of China
文摘Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
文摘Although several experimental and numerical studies have been carried out on the shear capacity of RC beams retrofitted by carbon or glass fibre-reinforced polymers, there has been little work on hybrid FRP sheet applications, particularly under cyclic loading. In the present research, five RC beams were constructed, and four of which were retrofitted using various schemes of FRP sheets. All beams were subjected to quasi-static cyclic loading in an attempt to represent the effect repetitive loading. The ultimate load, and deflection response at mid-span of the beams were measured and compared with predictions of a computational model based on finite element analysis. Experimental results demonstrated that hybrid applications of FRP sheets can improve the shear performance of retrofitted RC beams and increase the ultimate strain of the FRP sheets at failure. The results of the computational model were in reasonable agreement with the corresponding experimental results.