By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show th...By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show that the pore structure is primarily dependent on the solidification mode(planar,columnar cellular,columnar dendritic,equiaxed dendritic),which is controlled by the solidification process.By numerical simulation,it is noted that along with solidification,the solidification mode of the alloy transforms from cellular to columnar dendritic and finally to equiaxed dendritic.Through increasing melt temperature and mold preheating,the range of equiaxed dendrite could be decreased,which helps to extend the region of oriented pore structure.展开更多
Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface c...Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.展开更多
The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alum...The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.展开更多
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition...The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.展开更多
The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 red...The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 reduction.In this work,we synthesize a series of porous bimetallic Cu–Sb alloys with different compositions for the catalytic reduction of CO2 to C2H4.It is demonstrated that the alloy catalysts are much more efficient than the pure Cu catalyst.The performance of the alloy catalysts depended strongly on the composition.Further,the alloy with a Cu:Sb ratio of 10:1 yielded the best results;it exhibited a high C2H4 Faradaic efficiency of 49.7%and a high current density of 28.5 mA cm?2 at?1.19 V vs.a reversible hydrogen electrode(RHE)in 0.1 M KCl solution.To the best of our knowledge,the electrocatalytic reduction of CO2 to C2H4 using Cu–Sb alloys as catalysts has not been reported.The excellent performance of the porous alloy catalyst is attributed to its favorable electronic configuration,large surface area,high CO2 adsorption rate,and fast charge transfer rate.展开更多
The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron...The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The results show that the mechanical properties of Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease slightly when the Si content is below 1.0%.This can be attributed to the comprehensive effect of microstructure evolution,including the increase of nano-sized α-Fe,the coarsened grain size,and an increase in Al2 Cu content at the grain boundary.When the Si content is 1.5%,the mechanical properties of the Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease significantly,and this can be attributed to the agglomerated second intermetallics,which is resulted from the formation of excess Si particles.展开更多
A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based prec...A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based precipitation model,employing the classical nucleation and growth theories,was adapted to deal with the precipitation kinetics (evolution of radius and volume fraction of precipitates for Ω phase) of aged Al-Cu-Mg-Ag alloys.The model gives an estimation of the precipitation kinetics (evolution of radius and density of precipitates for both θ' and Ω phases) of the alloy.The strengthening model based on Orowan mechanism was deduced.The microstructural development and strength predictions of the model are generally in good agreement with the experimental data.展开更多
The dynamic mechanical analyzer(DMA)was applied to investigate the damping properties of Mg-Cu based alloys.The results show that the as-cast hypoeutectic Mg-Cu binary alloys exhibit ultra-high damping capacities,whil...The dynamic mechanical analyzer(DMA)was applied to investigate the damping properties of Mg-Cu based alloys.The results show that the as-cast hypoeutectic Mg-Cu binary alloys exhibit ultra-high damping capacities,while the eutectic Mg-Cu alloy exhibits low damping capacity.The strain amplitude dependent damping performance reveals that the dislocation damping mainly dominates in Mg-Cu alloys.Furthermore,the influence of eutectic phase on damping mechanisms of Mg-Cu binary alloys was discussed in detail and the effect of Si addition on the damping of Mg-1%Cu based alloy was also reported.Two damping peaks are observed on the temperature dependent spectrum of Mg-Cu based alloys.One is located at room temperature,which is dislocation related peak;and the other is located at moderate temperature,which is caused by the grain boundary sliding.展开更多
Pure Cu films and Cu alloy films containing insoluble substances(Zr and Cr)were deposited on Si(100)substrates,in the presence of interfacial native suboxide(SiOx),by magnetron sputtering.Samples were vacuum annealed ...Pure Cu films and Cu alloy films containing insoluble substances(Zr and Cr)were deposited on Si(100)substrates,in the presence of interfacial native suboxide(SiOx),by magnetron sputtering.Samples were vacuum annealed between 300℃and 500 ℃to investigate effects of Zr and Cr additions on the thermal performance of Cu films.After annealing,copper silicides were found in the Cu(Zr)films,while no detectable silicides were observed in Cu and Cu(Cr)films.Upon annealing,Zr accelerated the diffusion and reaction between the film and the substrate,and lowered the thermal stability of Cu(Zr)alloy films on Si substrates,which was ascribed to the‘purifying effect’of Zr on the Si substrates.Whereas,Cr prohibited the agglomeration of Cu films at 500℃and decreased the surface roughness.As a result,the diffusion of Cu in Si substrates for Cu(Cr)films was effectively inhibited.In contrast to the high resistivity of Cu(Zr)films,the final resistivity of about 2.76μΩ·cm was achieved for the Cu(Cr)film.These results indicate that Cu(Cr)films have higher thermal stability than Cu(Zr)films on Si substrates and are preferable in the advanced barrierless Cu metallization.展开更多
A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed,...A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed, sulfuric acid concentration, reaction temperature, and particle size of the multi-metal oxide on the kinetics and mechanism of copper extraction were studied. It was found that the reaction kinetic model about the copper extraction from multi-metal oxide follows the mixed kinetic shrinking core mode: 1/31n(1-X)+(1-X)-l/3-1=680.5C(H2SO4)0.4297dp0.75115exp(-Ea/RT)t.展开更多
The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness...The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.展开更多
Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, ther...Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.展开更多
The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward ...The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu 2Ti compound which joins two parts to produce a brazing joint with higher strength.展开更多
The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interraci...The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interracial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface. The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.展开更多
基金Project(U0837603)supported by the NSFC-Yunnan Joint Foundation of ChinaProject(2092017)supported by the Natural Science Foundation of Beijing,China
文摘By the directional solidification of metal-gas eutectic method(GASAR),porous Cu-Mn alloy with oriented pores was fabricated successfully.The variation of pore structure was studied by experiments.The results show that the pore structure is primarily dependent on the solidification mode(planar,columnar cellular,columnar dendritic,equiaxed dendritic),which is controlled by the solidification process.By numerical simulation,it is noted that along with solidification,the solidification mode of the alloy transforms from cellular to columnar dendritic and finally to equiaxed dendritic.Through increasing melt temperature and mold preheating,the range of equiaxed dendrite could be decreased,which helps to extend the region of oriented pore structure.
基金supported by the National Basic Research Program of China(973 Program,2013CB933102)the National Natural Science Foundation of China(21273178,21573180,91545204)Xiamen-Zhuoyue Biomass Energy Co.Ltd~~
文摘Supported PtCu alloys have been broadly applied in heterogeneous catalysis and electrocatalysis owing to their excellent catalytic performance and high CO tolerance. It is important to analyze the outermost surface composition of the supported alloy nanoparticles to understand the nature of the catalytically active sites. In this paper, homogeneous face-centered cubic PtCu nanoparticles with a narrow particle size distribution were successfully fabricated and dispersed on a high-surface-area Ti〇2 powder support. The samples were oxidized and reduced in situ and then introduced into the ultrahigh vacuum chamber to measure the topmost surface composition by high-sensitivity low-energy ion scattering spectroscopy, and to determine the oxidation states of the elements by X-ray photoelectron spectroscopy. The surface composition and morphology, elemental distribu-tion, and oxidation states of the components were found to be significantly affected by the support and treatment conditions. The PtCu is de-alloyed upon oxidation with CuO wetting on the TiO2 sur-face and re-alloyed upon reduction. Phase diagrams of the surface composition and the bulk com-position were plotted and compared for the supported and unsupported materials.
基金Project(51271203)supported by the National Natural Science Foundation of Chinathe PPP project between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)+2 种基金Project(11JJ2025)supported by Hunan Provincial Natural Science Foundation of ChinaProject(YSZN2013CL06)supported by the Nonferrous Metals Science Foundation of HNG-CSUProject supported by the Aid program for Science Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.
基金financial supports from the National Natural Science Foundation of China(No.52071207)the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)+1 种基金the National Key Research and Development Program of China(No.2018YFB1106302)Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.
文摘The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 reduction.In this work,we synthesize a series of porous bimetallic Cu–Sb alloys with different compositions for the catalytic reduction of CO2 to C2H4.It is demonstrated that the alloy catalysts are much more efficient than the pure Cu catalyst.The performance of the alloy catalysts depended strongly on the composition.Further,the alloy with a Cu:Sb ratio of 10:1 yielded the best results;it exhibited a high C2H4 Faradaic efficiency of 49.7%and a high current density of 28.5 mA cm?2 at?1.19 V vs.a reversible hydrogen electrode(RHE)in 0.1 M KCl solution.To the best of our knowledge,the electrocatalytic reduction of CO2 to C2H4 using Cu–Sb alloys as catalysts has not been reported.The excellent performance of the porous alloy catalyst is attributed to its favorable electronic configuration,large surface area,high CO2 adsorption rate,and fast charge transfer rate.
基金Projects(51704084,51605106) supported by the National Natural Science Foundation of ChinaProject(2017M623068) supported by China Postdoctoral Science Foundation+3 种基金Project(2015A030312003) supported by the Natural Science Foundation for Team Research of Guangdong Province,ChinaProject(JC(2016)1026)) supported by the Science and Technology Foundation of Guizhou Province of ChinaProject(KY(2017)101)) supported by the Young Talent Growth Foundation of Education Department of Guizhou Province of ChinaProject(RC2017(5788)) supported by the Science and Technology Plan of Guizhou Province of China
文摘The effect of Si content on the microstructures and mechanical properties of the heat-treated Al-6.5 Cu-0.6 Mn-0.5 Fe alloy was investigated using image analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The results show that the mechanical properties of Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease slightly when the Si content is below 1.0%.This can be attributed to the comprehensive effect of microstructure evolution,including the increase of nano-sized α-Fe,the coarsened grain size,and an increase in Al2 Cu content at the grain boundary.When the Si content is 1.5%,the mechanical properties of the Al-6.5 Cu-0.6 Mn-0.5 Fe alloys decrease significantly,and this can be attributed to the agglomerated second intermetallics,which is resulted from the formation of excess Si particles.
基金Project(2005CB623705-04) supported by the National Basic Research Program of ChinaProject(1810-752300020) supported by Central South University and Ministry of Education of China for the Domestic Exchange PhD student
文摘A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based precipitation model,employing the classical nucleation and growth theories,was adapted to deal with the precipitation kinetics (evolution of radius and volume fraction of precipitates for Ω phase) of aged Al-Cu-Mg-Ag alloys.The model gives an estimation of the precipitation kinetics (evolution of radius and density of precipitates for both θ' and Ω phases) of the alloy.The strengthening model based on Orowan mechanism was deduced.The microstructural development and strength predictions of the model are generally in good agreement with the experimental data.
基金Project(50671083)supported by the National Natural Science Foundation of China
文摘The dynamic mechanical analyzer(DMA)was applied to investigate the damping properties of Mg-Cu based alloys.The results show that the as-cast hypoeutectic Mg-Cu binary alloys exhibit ultra-high damping capacities,while the eutectic Mg-Cu alloy exhibits low damping capacity.The strain amplitude dependent damping performance reveals that the dislocation damping mainly dominates in Mg-Cu alloys.Furthermore,the influence of eutectic phase on damping mechanisms of Mg-Cu binary alloys was discussed in detail and the effect of Si addition on the damping of Mg-1%Cu based alloy was also reported.Two damping peaks are observed on the temperature dependent spectrum of Mg-Cu based alloys.One is located at room temperature,which is dislocation related peak;and the other is located at moderate temperature,which is caused by the grain boundary sliding.
基金Project(08520740200)supported by the Applied Materials Research and Development Fund of Shanghai,China
文摘Pure Cu films and Cu alloy films containing insoluble substances(Zr and Cr)were deposited on Si(100)substrates,in the presence of interfacial native suboxide(SiOx),by magnetron sputtering.Samples were vacuum annealed between 300℃and 500 ℃to investigate effects of Zr and Cr additions on the thermal performance of Cu films.After annealing,copper silicides were found in the Cu(Zr)films,while no detectable silicides were observed in Cu and Cu(Cr)films.Upon annealing,Zr accelerated the diffusion and reaction between the film and the substrate,and lowered the thermal stability of Cu(Zr)alloy films on Si substrates,which was ascribed to the‘purifying effect’of Zr on the Si substrates.Whereas,Cr prohibited the agglomeration of Cu films at 500℃and decreased the surface roughness.As a result,the diffusion of Cu in Si substrates for Cu(Cr)films was effectively inhibited.In contrast to the high resistivity of Cu(Zr)films,the final resistivity of about 2.76μΩ·cm was achieved for the Cu(Cr)film.These results indicate that Cu(Cr)films have higher thermal stability than Cu(Zr)films on Si substrates and are preferable in the advanced barrierless Cu metallization.
基金Project(2011AA061003)supported by Hi-Tech Research and Development Program of China
文摘A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed, sulfuric acid concentration, reaction temperature, and particle size of the multi-metal oxide on the kinetics and mechanism of copper extraction were studied. It was found that the reaction kinetic model about the copper extraction from multi-metal oxide follows the mixed kinetic shrinking core mode: 1/31n(1-X)+(1-X)-l/3-1=680.5C(H2SO4)0.4297dp0.75115exp(-Ea/RT)t.
文摘The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.
基金Project(50675234)supported by the National Natural Science Foundation of China
文摘Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.
文摘The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu 2Ti compound which joins two parts to produce a brazing joint with higher strength.
文摘The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interracial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface. The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.