Finely divided silver nanoparticles were synthesized via the hydrothermal method. Arabic gum (AG) was used as both the reductant and steric stabilizer without any other surfactant. By adjusting the reaction temperat...Finely divided silver nanoparticles were synthesized via the hydrothermal method. Arabic gum (AG) was used as both the reductant and steric stabilizer without any other surfactant. By adjusting the reaction temperature, mass ratio of AG to AgNO3, and reaction time, silver nanoparticles with different morphological characteristics could be obtained. The products were characterized by UV-Vis, FTIR, TEM, SEM, and XRD measurements. It was found that temperature and AG played an important role in the synthesis of mono-disperse silver nanoparticles. Well dispersed and quasispherical silver nanoparticles were obtained under the optimal synthesis conditions of 10 mmol/L AgNO3, m(AG)/m(AgN03)= l:1, 160 ℃ and 3 h.展开更多
The electrochemical deposition technique was applied to achieve porous silicon (PS) surface passivated with Ag deposition for improving the properties of PS photoluminescence. The relation of Ag depositing forms to ...The electrochemical deposition technique was applied to achieve porous silicon (PS) surface passivated with Ag deposition for improving the properties of PS photoluminescence. The relation of Ag depositing forms to current density and the effect of PS hydrophilic surface on deposition uniformity were investigated. The experimental results indicated that there were two critical current densities (maximum and minimum) in which Ag was absent and electroplated on PS surface correspondingly, and the range of current density for deposition of Ag on porous silicon was from 50 μA/cm^2 to 400 μA/cm^2. The process of changing PS surface from hydrophobic into hydrophilic had positive effect on Ag deposition uniformity. Under the same experimental conditions, PS hydrophobic surface presented uneven Ag deposition.However, hydrophilic surface treated with SC-1 solution was even. Finally, the effect of PS surface passivation with Ag even deposition on photoluminescence intensity and stabilization of PS was studied. It was discovered that Ag passivation inhibited the degradation of PL intensity effectively. In addition, excessive Ag deposition had a quenching effect on room-temperature visible photoluminescence of PS.展开更多
[Objective] The experiment aimed to study the difference of water physiology of male and female Ginkgo biloba L. for discussing the strategy of water utilization as well as the important role of this difference during...[Objective] The experiment aimed to study the difference of water physiology of male and female Ginkgo biloba L. for discussing the strategy of water utilization as well as the important role of this difference during evolution process. [Method] The stem sap flow, stomatal conductance(Gs), transpiration rate(Tr) and water use efficiency (WUE) of male and female Ginkgo biloba L. were comparatively studied. [Result] The day-night processes of flow on male and female Ginkgo biloba L. were similar. The flow on male and female Ginkgo biloba L. in day were almost same while the flow at night on male Ginkgo biloba L. was bigger than that on female Ginkgo biloba L. The Tr and Gs of male and female Ginkgo biloba L. were high in morning and at night but low at noon ,while Tr and Gs of female Ginkgo biloba L. in morning and at night were higher than these of male Ginkgo biloba L. at the same time point. However, these indexes of female plant were lower than these of male plant from 11:00 to 14:00. WUE changing trends of male and female Ginkgo biloba L. were similar, while average water utilization rate of female Ginkgo biloba L. was slightly lower than that of male Ginkgo biloba L. [Conclusion] Compared with other companion plants, water physiology of male and female Ginkgo biloba L. had strong homoplasy. The phenomenon might be a survival strategy of dioecious plants under long term evolutionary pressure.展开更多
Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and th...Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and they could also provide valuable information about the impact of emission controls on the global budget of atmospheric mercury,their observance and an insight into the global mercury cycle. China is believed to be an increasing atmospheric mercury emission source. However,only a few measurements of mercury,to our knowledge,have been done in ambient air over China. The highly-time resolved atmospheric mercury concen-trations have been measured at Moxi Base Station (102°72′E 29°92′N,1640 m asl) of the Gongga Alpine Ecosystem Observation and Experiment Station of Chinese Academy of Sciences (CAS) from May 2005 to June 2006 by using a set of Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A). Measurements were carried out with a time resolution of every 15 minutes. The overall average total gaseous mercury (TGM) covering the measurement periods was 4±1.38 ng·m-3 (N=57310),which is higher than the global background level of approximately 1.5~2.0 ng·m-3. The measurements in all seasons showed a similar diurnal change pattern with a high concentration during daytime relative to nighttime and maximum concentration near solar noon and minimum concentration immediately before sunrise. The presence of diurnal TGM peaks during spring and summer was found earlier than that during autumn and winter. When divided seasonally,it was found that the concentrations of TGM were highest in winter with 6.13 ± 1.78 ng·m-3 and lowest in summer with 3.17 ± 0.67 ng·m-3. There were no significant differences in TGM among wind sectors during each season. Whereas Hg generally exhibited significant correlations with the parameters,such as temperature,saturated vapor pressure,precipitation,ultraviolet radiation (UV) and atmospheric pressure at the whole measurement stage,and the correlations varied seasonally. Our results suggest that the local or regional abundant geothermal activities,such as thermal spring,anthropogenic source processes and changes in meteorological conditions,regulate and affect Hg behavior in the study area.展开更多
A fast and selective adsorbent for Hg(ll) from aqueous solutions using thiourea (TU) functionalized polypropylene fiber grafted acrylic acid (PP-g-AA), PP-g-AA-TU fibers, was characterized by Fourier transform i...A fast and selective adsorbent for Hg(ll) from aqueous solutions using thiourea (TU) functionalized polypropylene fiber grafted acrylic acid (PP-g-AA), PP-g-AA-TU fibers, was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption behavior of the functionalized chelating fibers for Hg(Ⅱ) was investigated by static adsorption experiments, and the effects of some essential factors on adsorption of Hg(Ⅱ) were examined, such as pH, initial concentration, adsorption time, coexisting cations, and temperature, The results showed that the adsorptive equilibrium could be achieved in 10 min, and the equilibrium adsorption quantity of PP-g-AA-TU fibers was 20 times that of PP-g-AA fibers. The PP-g-AA-TU fibers showed a very high adsorption rate and a good selectivity for Hg(Ⅱ) over a wide range of pH. The adsorption isotherm can be well described with Langmuir model, with the maximum adsorption capacity for Hg(Ⅱ) up to 52.04 mg.g-1 and the removal of Hg(Ⅱ) more than 97%. The kinetic data indicate that the adsorption process is best-fitted into the pseudo-second-order model.展开更多
During sampling for spawning stock of the silver pomfret,Pampus argenteus in Kuwait waters,a few seriously deformed individuals were captured.These individuals had been attacked and wounded,but had healed and survived...During sampling for spawning stock of the silver pomfret,Pampus argenteus in Kuwait waters,a few seriously deformed individuals were captured.These individuals had been attacked and wounded,but had healed and survived.The fish body deformities are believed to be caused by predation attempts on silver pomfret by predators such as sharks,groupers,and croakers.展开更多
Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared usin...Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared using multiple characterization methods. Pore blockage and active site coverage caused by chlorine-containing organics are responsible for catalyst deactivation. The reactions of chloroethylene and acetylene with chlorine free radical can generate chlorine-containing organic species. SiO_2 and functional groups on activated carbon contribute to the generation of carbon deposition. No significant reduction in the total content of mercury was observed after catalyst deactivation, while there was mercury loss locally. The irreversible loss of HgCl_2 caused by volatilization, reduction and poisoning of elements S and P also can lead to catalyst deactivation. Si, Al, Ca and Fe oxides are scattered on the activated carbon. Active components are still uniformly absorbed on activated carbon after catalyst deactivation.展开更多
The pore structure of the tight limestone in the Daanzhai Member of the Ziliujing Formation, Jurassic System, in central Sichuan Basin, China, is complex but essential to the exploration and development of tight oil. ...The pore structure of the tight limestone in the Daanzhai Member of the Ziliujing Formation, Jurassic System, in central Sichuan Basin, China, is complex but essential to the exploration and development of tight oil. The pore structure of the tight limestone is studied by using scanning electron microscopy (SEM), nitrogen adsorption, high-pressure mercury intrusion, and nuclear magnetic resonance (NMR). The experimental results suggest that the pores are mainly slit pores and mesopores and macropores contribute to the pore volume and specific surface. The displacement pressure, average pore size, and homogeneity coefficient correlate with porosity and permeability and can be used to evaluate the pore structure. The full pore-size distribution was obtained by combining nitrogen adsorption and high-pressure mercury intrusion. We find that the limestone mainly contains mesopores with diameter of 2-50 nm. The T2 distribution was converted into pore-size distribution, well matching the full pore-size distribution. The relation between T2 and pore size obeys a power law and the geometric mean of T2 correlates with the pore structure and can be used in the pore structure evaluation.展开更多
The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were ...The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were investigated.The results show that AgNPs concentrations in the water phase declined with the increase in time,and the reduction degree was dependent on the initial concentrations of AgNPs.The silver concentrations in the roots(r=0.98,p<0.05),stems and leaves(r=1,p<0.001)were significantly positively correlated with the initial concentrations of AgNPs.Silver nanoparticles accumulated in plant roots more than stems and leaves.Compared with the addition of AgNO 3 at identical concentrations,lower removal rates of silver and plant uptake were observed in the AgNPs stress systems.A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99,p<0.001).For AgNPs,the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation,while the absorption by plants had a relatively weak contribution.展开更多
Mercury sphygmomanometer (MSM) is reliable and widely used in clinics and hospitals. The principle of Korotkoff sounds method (KSM) applied in the MSM is also a gold standard to measure blood pressure. Many efforts ha...Mercury sphygmomanometer (MSM) is reliable and widely used in clinics and hospitals. The principle of Korotkoff sounds method (KSM) applied in the MSM is also a gold standard to measure blood pressure. Many efforts have been made attempting to replace MSM, which is criticized for being not healthy and safe. In this research, an electronic blood pressure monitor, named K-sounds electronic sphygmomanometer (KESM), was designed as a substitute to MSM. The three key elements of KSM were proposed for the first time. We used appropriate electronic components to build the KESM which can fulfill the functions related to the three key elements. The KESM, which was easy to operate and free of mercury, followed the same principle as MSM. The same principle guaranteed the comparable accuracy. We took equivalence test and the results showed that the designed KESM was as accurate as the calibrated standard MSM. The designed KESM passed the certifications of SFDA and is qualified in clinics or hospitals for diagnostic purposes.展开更多
The Jiaozhou Bay is a semi-enclosed bay, Qingdao, China. More than 10 rivers enter the bay, of which most take wastes from industrial and household discharges. According to historical seasonal investigations in May, A...The Jiaozhou Bay is a semi-enclosed bay, Qingdao, China. More than 10 rivers enter the bay, of which most take wastes from industrial and household discharges. According to historical seasonal investigations in May, August, November 1979, the content, distribution, and development of heavy metal mercury are analyzed as a historical reference. Water samples were taken from the surface and bottom. The results revealed clear seasonal and regional changes in both horizontal and vertical directions, and close relation with major discharging rivers and plankton production. The seawater was polluted more seriously in spring than in any other seasons. However, it was the cleanest in winter during which least waste was input with low plankton production. According to historical data, the state of mercury pollution in seawater was worsening in the period, and has been improving in recent years. Terrestrial contamination was the main reason for mercury pollution in the bay.展开更多
文摘Finely divided silver nanoparticles were synthesized via the hydrothermal method. Arabic gum (AG) was used as both the reductant and steric stabilizer without any other surfactant. By adjusting the reaction temperature, mass ratio of AG to AgNO3, and reaction time, silver nanoparticles with different morphological characteristics could be obtained. The products were characterized by UV-Vis, FTIR, TEM, SEM, and XRD measurements. It was found that temperature and AG played an important role in the synthesis of mono-disperse silver nanoparticles. Well dispersed and quasispherical silver nanoparticles were obtained under the optimal synthesis conditions of 10 mmol/L AgNO3, m(AG)/m(AgN03)= l:1, 160 ℃ and 3 h.
文摘The electrochemical deposition technique was applied to achieve porous silicon (PS) surface passivated with Ag deposition for improving the properties of PS photoluminescence. The relation of Ag depositing forms to current density and the effect of PS hydrophilic surface on deposition uniformity were investigated. The experimental results indicated that there were two critical current densities (maximum and minimum) in which Ag was absent and electroplated on PS surface correspondingly, and the range of current density for deposition of Ag on porous silicon was from 50 μA/cm^2 to 400 μA/cm^2. The process of changing PS surface from hydrophobic into hydrophilic had positive effect on Ag deposition uniformity. Under the same experimental conditions, PS hydrophobic surface presented uneven Ag deposition.However, hydrophilic surface treated with SC-1 solution was even. Finally, the effect of PS surface passivation with Ag even deposition on photoluminescence intensity and stabilization of PS was studied. It was discovered that Ag passivation inhibited the degradation of PL intensity effectively. In addition, excessive Ag deposition had a quenching effect on room-temperature visible photoluminescence of PS.
基金Supported by the State Key Fundamental Science Fund of China(2005CB422208)NSF-China Project(40671132)the State Data Synthesis and Analysis Funds of China(2006DKA32300-08)~~
文摘[Objective] The experiment aimed to study the difference of water physiology of male and female Ginkgo biloba L. for discussing the strategy of water utilization as well as the important role of this difference during evolution process. [Method] The stem sap flow, stomatal conductance(Gs), transpiration rate(Tr) and water use efficiency (WUE) of male and female Ginkgo biloba L. were comparatively studied. [Result] The day-night processes of flow on male and female Ginkgo biloba L. were similar. The flow on male and female Ginkgo biloba L. in day were almost same while the flow at night on male Ginkgo biloba L. was bigger than that on female Ginkgo biloba L. The Tr and Gs of male and female Ginkgo biloba L. were high in morning and at night but low at noon ,while Tr and Gs of female Ginkgo biloba L. in morning and at night were higher than these of male Ginkgo biloba L. at the same time point. However, these indexes of female plant were lower than these of male plant from 11:00 to 14:00. WUE changing trends of male and female Ginkgo biloba L. were similar, while average water utilization rate of female Ginkgo biloba L. was slightly lower than that of male Ginkgo biloba L. [Conclusion] Compared with other companion plants, water physiology of male and female Ginkgo biloba L. had strong homoplasy. The phenomenon might be a survival strategy of dioecious plants under long term evolutionary pressure.
文摘Long-term monitoring programs for measurement of atmospheric mercury concentrations are presently recognized as powerful tools for local,regional and global studies of atmospheric long-range transport processes,and they could also provide valuable information about the impact of emission controls on the global budget of atmospheric mercury,their observance and an insight into the global mercury cycle. China is believed to be an increasing atmospheric mercury emission source. However,only a few measurements of mercury,to our knowledge,have been done in ambient air over China. The highly-time resolved atmospheric mercury concen-trations have been measured at Moxi Base Station (102°72′E 29°92′N,1640 m asl) of the Gongga Alpine Ecosystem Observation and Experiment Station of Chinese Academy of Sciences (CAS) from May 2005 to June 2006 by using a set of Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A). Measurements were carried out with a time resolution of every 15 minutes. The overall average total gaseous mercury (TGM) covering the measurement periods was 4±1.38 ng·m-3 (N=57310),which is higher than the global background level of approximately 1.5~2.0 ng·m-3. The measurements in all seasons showed a similar diurnal change pattern with a high concentration during daytime relative to nighttime and maximum concentration near solar noon and minimum concentration immediately before sunrise. The presence of diurnal TGM peaks during spring and summer was found earlier than that during autumn and winter. When divided seasonally,it was found that the concentrations of TGM were highest in winter with 6.13 ± 1.78 ng·m-3 and lowest in summer with 3.17 ± 0.67 ng·m-3. There were no significant differences in TGM among wind sectors during each season. Whereas Hg generally exhibited significant correlations with the parameters,such as temperature,saturated vapor pressure,precipitation,ultraviolet radiation (UV) and atmospheric pressure at the whole measurement stage,and the correlations varied seasonally. Our results suggest that the local or regional abundant geothermal activities,such as thermal spring,anthropogenic source processes and changes in meteorological conditions,regulate and affect Hg behavior in the study area.
基金Supported by the Tianjin and MOST Innovation Fund for Small Technology-based Firms(14ZXCXGX00724,13C26211200305)Science and Technology Support Program(13ZCZDSF00100)
文摘A fast and selective adsorbent for Hg(ll) from aqueous solutions using thiourea (TU) functionalized polypropylene fiber grafted acrylic acid (PP-g-AA), PP-g-AA-TU fibers, was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption behavior of the functionalized chelating fibers for Hg(Ⅱ) was investigated by static adsorption experiments, and the effects of some essential factors on adsorption of Hg(Ⅱ) were examined, such as pH, initial concentration, adsorption time, coexisting cations, and temperature, The results showed that the adsorptive equilibrium could be achieved in 10 min, and the equilibrium adsorption quantity of PP-g-AA-TU fibers was 20 times that of PP-g-AA fibers. The PP-g-AA-TU fibers showed a very high adsorption rate and a good selectivity for Hg(Ⅱ) over a wide range of pH. The adsorption isotherm can be well described with Langmuir model, with the maximum adsorption capacity for Hg(Ⅱ) up to 52.04 mg.g-1 and the removal of Hg(Ⅱ) more than 97%. The kinetic data indicate that the adsorption process is best-fitted into the pseudo-second-order model.
文摘During sampling for spawning stock of the silver pomfret,Pampus argenteus in Kuwait waters,a few seriously deformed individuals were captured.These individuals had been attacked and wounded,but had healed and survived.The fish body deformities are believed to be caused by predation attempts on silver pomfret by predators such as sharks,groupers,and croakers.
基金Supported by the National Science Fund for Excellent Young Scholars of China(No.51522405)
文摘Mercury-containing catalysts are widely used for acetylene hydrochlorination in China. Surface chemical characteristics of the fresh low-level mercury catalysts and spent low-level mercury catalysts were compared using multiple characterization methods. Pore blockage and active site coverage caused by chlorine-containing organics are responsible for catalyst deactivation. The reactions of chloroethylene and acetylene with chlorine free radical can generate chlorine-containing organic species. SiO_2 and functional groups on activated carbon contribute to the generation of carbon deposition. No significant reduction in the total content of mercury was observed after catalyst deactivation, while there was mercury loss locally. The irreversible loss of HgCl_2 caused by volatilization, reduction and poisoning of elements S and P also can lead to catalyst deactivation. Si, Al, Ca and Fe oxides are scattered on the activated carbon. Active components are still uniformly absorbed on activated carbon after catalyst deactivation.
基金The work was supported by the National Natural Science Foundation of China (No. 41374144), the National Key Basic Research Program of China (973 Program) (No. 2014CB239201), and SINOPEC Key Laboratory of Geophysics.
文摘The pore structure of the tight limestone in the Daanzhai Member of the Ziliujing Formation, Jurassic System, in central Sichuan Basin, China, is complex but essential to the exploration and development of tight oil. The pore structure of the tight limestone is studied by using scanning electron microscopy (SEM), nitrogen adsorption, high-pressure mercury intrusion, and nuclear magnetic resonance (NMR). The experimental results suggest that the pores are mainly slit pores and mesopores and macropores contribute to the pore volume and specific surface. The displacement pressure, average pore size, and homogeneity coefficient correlate with porosity and permeability and can be used to evaluate the pore structure. The full pore-size distribution was obtained by combining nitrogen adsorption and high-pressure mercury intrusion. We find that the limestone mainly contains mesopores with diameter of 2-50 nm. The T2 distribution was converted into pore-size distribution, well matching the full pore-size distribution. The relation between T2 and pore size obeys a power law and the geometric mean of T2 correlates with the pore structure and can be used in the pore structure evaluation.
基金The National Natural Science Foundation of China(No.51479034,5151101102)Fundamental Research Funds for the Central Universities(No.2242016R30008)
文摘The migration and dissolution of AgNPs in an aquatic system with plants was investigated.By using a hydroponic system with Eichhornia crassipes,the absorption and transportation processes of silver nanoparticles were investigated.The results show that AgNPs concentrations in the water phase declined with the increase in time,and the reduction degree was dependent on the initial concentrations of AgNPs.The silver concentrations in the roots(r=0.98,p<0.05),stems and leaves(r=1,p<0.001)were significantly positively correlated with the initial concentrations of AgNPs.Silver nanoparticles accumulated in plant roots more than stems and leaves.Compared with the addition of AgNO 3 at identical concentrations,lower removal rates of silver and plant uptake were observed in the AgNPs stress systems.A significant positive correlation was also found between the initial AgNPs concentrations and the removed amount of silver(r=0.99,p<0.001).For AgNPs,the primary removal mechanisms in these aquatic systems were agglomeration and sedimentation,while the absorption by plants had a relatively weak contribution.
基金Supported by the Innovation Fund Project from Ministry of Science and Technology of China (08C26214401239)
文摘Mercury sphygmomanometer (MSM) is reliable and widely used in clinics and hospitals. The principle of Korotkoff sounds method (KSM) applied in the MSM is also a gold standard to measure blood pressure. Many efforts have been made attempting to replace MSM, which is criticized for being not healthy and safe. In this research, an electronic blood pressure monitor, named K-sounds electronic sphygmomanometer (KESM), was designed as a substitute to MSM. The three key elements of KSM were proposed for the first time. We used appropriate electronic components to build the KESM which can fulfill the functions related to the three key elements. The KESM, which was easy to operate and free of mercury, followed the same principle as MSM. The same principle guaranteed the comparable accuracy. We took equivalence test and the results showed that the designed KESM was as accurate as the calibrated standard MSM. The designed KESM passed the certifications of SFDA and is qualified in clinics or hospitals for diagnostic purposes.
基金the Director's Foundation of the Beihai Monitoring Center,the State Oceanic Administration and Chinese Academy of Science (KZCX 2-207)the Scientific Research Foundation of Wenzhou Medical College (QTJ06013).
文摘The Jiaozhou Bay is a semi-enclosed bay, Qingdao, China. More than 10 rivers enter the bay, of which most take wastes from industrial and household discharges. According to historical seasonal investigations in May, August, November 1979, the content, distribution, and development of heavy metal mercury are analyzed as a historical reference. Water samples were taken from the surface and bottom. The results revealed clear seasonal and regional changes in both horizontal and vertical directions, and close relation with major discharging rivers and plankton production. The seawater was polluted more seriously in spring than in any other seasons. However, it was the cleanest in winter during which least waste was input with low plankton production. According to historical data, the state of mercury pollution in seawater was worsening in the period, and has been improving in recent years. Terrestrial contamination was the main reason for mercury pollution in the bay.