研究了Mg-1.0Ca-0.3Zn合金在银离子剂量为1.5×1017cm-2注入条件下,在模拟体液(simulated body flmd,SBF)中的耐腐蚀性.通过纳米压痕和三电极体系法对合金的表面硬度和弹性模量、在SBF中的极化曲线测定表明:经过银离子注入后,合金...研究了Mg-1.0Ca-0.3Zn合金在银离子剂量为1.5×1017cm-2注入条件下,在模拟体液(simulated body flmd,SBF)中的耐腐蚀性.通过纳米压痕和三电极体系法对合金的表面硬度和弹性模量、在SBF中的极化曲线测定表明:经过银离子注入后,合金的表面硬度和pH值逐渐增加,加快了SBF溶液的碱化.Abstract:The corrosion resistance of Ag ion implanted with dose of 1.5×1017 cm-2 for Mg-1.0 Ca-0.3 Zn magnesium alloy in the simulated body fluid was investigated. The surface hardness and elastic modulus of the alloy and the polarization curve in the SBF were obtained by Nano Snick and three electrode system, respectively. The results indicate that the hardness and the elastic modulus are improved obviously after the implantation of Ag ions, the surface hardness reaches the maximum at a depth of 250 nm below the alloy surface. Meanwhile, the polarization resistance is strengthened, and consequently the corrosion resistance of the alloy is improved. Moreover, the pH value of the SBF within 48 h increases gradually and the alkalization of the SBF is accelerated.展开更多
基金Tianjin Science and Technology Project(07ZCKFSF01100)
文摘研究了Mg-1.0Ca-0.3Zn合金在银离子剂量为1.5×1017cm-2注入条件下,在模拟体液(simulated body flmd,SBF)中的耐腐蚀性.通过纳米压痕和三电极体系法对合金的表面硬度和弹性模量、在SBF中的极化曲线测定表明:经过银离子注入后,合金的表面硬度和pH值逐渐增加,加快了SBF溶液的碱化.Abstract:The corrosion resistance of Ag ion implanted with dose of 1.5×1017 cm-2 for Mg-1.0 Ca-0.3 Zn magnesium alloy in the simulated body fluid was investigated. The surface hardness and elastic modulus of the alloy and the polarization curve in the SBF were obtained by Nano Snick and three electrode system, respectively. The results indicate that the hardness and the elastic modulus are improved obviously after the implantation of Ag ions, the surface hardness reaches the maximum at a depth of 250 nm below the alloy surface. Meanwhile, the polarization resistance is strengthened, and consequently the corrosion resistance of the alloy is improved. Moreover, the pH value of the SBF within 48 h increases gradually and the alkalization of the SBF is accelerated.