A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse en...A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse energy of electrons emitted from the photocathode are calculated. Measurement is made of the variation of mean transverse emission energy with activating time during the course of activation. It is shown that the scattering of the photoelectrons in the Cs/O layer is the primary cause of the unexpectant high values of the mean transverse energy of electrons emitted from GaAs/GaAlAs photocathode. A method is proposed for the reduction of the mean transverse energy of electrons emitted from the photocathode.展开更多
The resolution characteristic of GaAs/GaAlAs transmission photocathode is an important parameter in third generation intensifiers. The modulation transfer function of GaAs/GaAlAs transmission photo...The resolution characteristic of GaAs/GaAlAs transmission photocathode is an important parameter in third generation intensifiers. The modulation transfer function of GaAs/GaAlAs transmission photocathode is derived from a simple two-dimensional diffusion equation. The theoretical resolution characteristic of a 2 μm thick GaAs/GaAlAs transmission photocathode is calculated. The relationship between resolution and parameters in GaAs/GaAlAs transmission photocathode is discussed. A conclusion is shown that one can design the GaAs/GaAlAs transmission photocathode for maximum quantum efficiency, since the sacrifice in the resolution doesn't limit system performances.展开更多
文摘A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse energy of electrons emitted from the photocathode are calculated. Measurement is made of the variation of mean transverse emission energy with activating time during the course of activation. It is shown that the scattering of the photoelectrons in the Cs/O layer is the primary cause of the unexpectant high values of the mean transverse energy of electrons emitted from GaAs/GaAlAs photocathode. A method is proposed for the reduction of the mean transverse energy of electrons emitted from the photocathode.
文摘The resolution characteristic of GaAs/GaAlAs transmission photocathode is an important parameter in third generation intensifiers. The modulation transfer function of GaAs/GaAlAs transmission photocathode is derived from a simple two-dimensional diffusion equation. The theoretical resolution characteristic of a 2 μm thick GaAs/GaAlAs transmission photocathode is calculated. The relationship between resolution and parameters in GaAs/GaAlAs transmission photocathode is discussed. A conclusion is shown that one can design the GaAs/GaAlAs transmission photocathode for maximum quantum efficiency, since the sacrifice in the resolution doesn't limit system performances.