目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP...目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。展开更多
随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估。针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振...随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估。针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振荡风险预测方法。首先,提出了电力系统检修方式的统一编码方法,使计算机能够快速、准确识别电网在各种检修方式下的运行状态;然后,基于同步相量测量单元(phasor measurement unit,PMU)实时测量的电网历史运行数据,利用LSTM神经网络对不同检修方式下电网的低频振荡次数进行预测,从而评估检修态电网发生低频振荡的风险;最后,以华中地区某省级电网为算例,验证了所提方法的准确性和快速性。展开更多
文摘目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。
文摘随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估。针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振荡风险预测方法。首先,提出了电力系统检修方式的统一编码方法,使计算机能够快速、准确识别电网在各种检修方式下的运行状态;然后,基于同步相量测量单元(phasor measurement unit,PMU)实时测量的电网历史运行数据,利用LSTM神经网络对不同检修方式下电网的低频振荡次数进行预测,从而评估检修态电网发生低频振荡的风险;最后,以华中地区某省级电网为算例,验证了所提方法的准确性和快速性。