期刊文献+
共找到1,598篇文章
< 1 2 80 >
每页显示 20 50 100
采用门控循环单元神经网络和多特征融合的铣削刀具磨损监测
1
作者 葛慧 韩林池 +7 位作者 麻俊方 宋清华 王润琼 刘战强 杜宜聪 王兵 蔡玉奎 赵金富 《机械科学与技术》 CSCD 北大核心 2024年第4期667-673,共7页
为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效... 为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效性进行了验证,分析了不同超参数设置对模型识别精度的影响机制,给出了最优超参数,实现了对铣削刀具磨损的精确识别。 展开更多
关键词 刀具磨损 铣削力信号 状态监测 门控循环单元神经网络
下载PDF
基于多头注意力机制和门控循环单元神经网络的居民充电桩容量预测
2
作者 谢乐 杨浙 刘东 《电机与控制应用》 2024年第3期21-29,共9页
居民充电桩的容量预测可为其定容选址提供参考,助力实现“双碳”目标,为此提出了一种基于数据驱动的居民充电桩容量预测方法。首先,采集了居民充电桩的历史容量数据并进行预处理;其次,利用不同大小的时序窗口对其进行切片作为输入特征;... 居民充电桩的容量预测可为其定容选址提供参考,助力实现“双碳”目标,为此提出了一种基于数据驱动的居民充电桩容量预测方法。首先,采集了居民充电桩的历史容量数据并进行预处理;其次,利用不同大小的时序窗口对其进行切片作为输入特征;最后,构建了结合多头注意力机制和门控循环单元神经网络的预测模型,将特征输入模型从而实现了对未来容量的精准预测。通过实例分析表明,该模型预测结果的平均绝对误差和均方根误差分别为33.19和102.14%,预测精度相较于其他模型有较大提升,为居民充电桩的容量预测提供了新思路。 展开更多
关键词 数据驱动 充电桩 容量预测 多头注意力机制 门控循环单元神经网络
下载PDF
基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法 被引量:44
3
作者 李超然 肖飞 +2 位作者 樊亚翔 杨国润 唐欣 《电工技术学报》 EI CSCD 北大核心 2020年第9期2051-2062,共12页
锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方... 锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方法利用Huber-M估计改进卡尔曼滤波器的鲁棒性,并将基于GRU-RNN所估算的锂离子电池SOC值作为改进卡尔曼滤波器的观测量。在两组锂离子电池数据集上分别进行锂离子电池SOC估算实验。实验结果表明,基于GRU-RNN和HKF融合方法的锂离子电池SOC估算模型不仅能够准确地实现锂离子电池SOC估算,而且能够降低测量误差及异常值对估算结果的影响,使锂离子电池SOC估算结果快速且精确收敛。 展开更多
关键词 锂电池 荷电状态 门控循环单元神经网络 卡尔曼滤波
下载PDF
基于门控循环单元神经网络的储层孔渗饱参数预测 被引量:20
4
作者 王俊 曹俊兴 +2 位作者 尤加春 刘杰 周欣 《石油物探》 EI CSCD 北大核心 2020年第4期616-627,共12页
孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法... 孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法,门控循环单元(gated recurrent unit,GRU)神经网络算法能较好地反映出孔渗饱参数与测井数据之间的非线性映射关系以及不同深度历史数据之间的关联。基于GRU神经网络的储层孔渗饱参数预测方法首先采用基于Copula函数的相关性测度法筛选与孔渗饱参数关联度较高的测井参数,而后利用GRU神经网络建立测井数据与孔渗饱参数之间的非线性映射关系。对四川盆地某探区实际测井数据进行了GRU神经网络储层孔渗饱参数预测的模型训练和预测试验,最后将预测结果与多元回归分析、循环神经网络等方法的预测结果进行比较,结果表明,以均方根误差和Pearson相关系数为评价指标,基于门控循环单元神经网络的储层孔渗饱参数预测方法效果优于其它方法。 展开更多
关键词 相关性分析 COPULA函数 循环神经网络 门控循环单元神经网络 孔隙度 渗透率 饱和度 储层预测
下载PDF
考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计 被引量:3
5
作者 胡明辉 朱广曜 +1 位作者 刘长贺 唐国峰 《汽车工程》 EI CSCD 北大核心 2023年第9期1688-1701,共14页
由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联... 由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联合门控循环单元(GRU)神经网络和自适应扩展卡尔曼滤波(AEKF)的SOC估计,分别以AEKF和GRU神经网络的估计结果为模型值和测量值,通过卡尔曼滤波(KF)得到最终的SOC估计结果,并作为下一时刻AEKF的输入。结果表明,常温环境下考虑迟滞特性的模型对端电压预测及联合估计法对SOC估计的均方根误差(RMSE)分别在0.5 mV和0.64%以内;低温及变温环境下端电压预测及SOC估计的RMSE分别在0.9 mV和0.72%以内。考虑迟滞特性的模型及联合估计法具有良好的精度和鲁棒性。 展开更多
关键词 锂离子电池 迟滞特性 荷电状态 门控循环单元神经网络 自适应扩展卡尔曼滤波
下载PDF
基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型 被引量:22
6
作者 谢乐 仇炜 +3 位作者 李振伟 刘洋 蒋启龙 刘东 《高电压技术》 EI CAS CSCD 北大核心 2022年第2期653-660,共8页
油中溶解气体分析是变压器早期故障诊断的一种有效方法,对变压器油中溶解气体进行精准预测,可为变压器早期故障监测和预警提供理论依据。为此本研究提出了一种基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型。首... 油中溶解气体分析是变压器早期故障诊断的一种有效方法,对变压器油中溶解气体进行精准预测,可为变压器早期故障监测和预警提供理论依据。为此本研究提出了一种基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型。首先对变压器原始油中溶解气体体积分数时间序列进行变分模态分解,将其分解为各子序列,消除其不平稳性的影响;然后分别建立门控循环单元神经网络预测模型对各子序列进行单步和多步预测;最后将预测得到的各子序列进行叠加重构从而得到对变压器油中溶解气体体积分数的单步和多步预测。算例分析表明,该模型单步预测的平均绝对误差和均方根误差分别为0.0576和0.0684,多步预测的平均绝对误差和均方根误差分别为0.1679和0.2041。相比于其他预测模型,该研究所提出模型在单步和多步预测能力上均有较大提升,为电力变压器监测预警提供了参考。 展开更多
关键词 变分模态分解 门控循环单元神经网络 变压器 油中溶解气体 预测模型
下载PDF
基于门控循环单元神经网络的箱型梁结构裂纹损伤检测方法 被引量:7
7
作者 骆撷冬 马栋梁 +1 位作者 张松林 王德禹 《中国舰船研究》 CSCD 北大核心 2022年第4期194-203,共10页
[目的]随着智能船舶的发展,传统裂纹损伤检测方法已难以满足检测需求,为此,提出一种基于门控循环单元(GRU)神经网络的箱型梁结构裂纹损伤实时检测方法。[方法]通过基于Python语言的ABAQUS二次开发技术,建立箱型梁裂纹损伤模型,计算其在... [目的]随着智能船舶的发展,传统裂纹损伤检测方法已难以满足检测需求,为此,提出一种基于门控循环单元(GRU)神经网络的箱型梁结构裂纹损伤实时检测方法。[方法]通过基于Python语言的ABAQUS二次开发技术,建立箱型梁裂纹损伤模型,计算其在动态高斯白噪声激励下的加速度响应。通过数据裁剪技术扩充原始数据之后生成数据集,并考虑噪声的影响。建立基于GRU的箱型梁裂纹损伤检测模型,直接将加速度响应数据集作为输入,以最小损失函数值为目标来训练模型,并与基于小波包变换的多层感知机神经网络(WPT-MLP)进行对比。[结果]结果显示,所提出的GRU模型在损伤位置和损伤长度的检测上相比WPT-MLP检测精度更高,对噪声的敏感程度更低,且在对损伤位置的近似预测方面精度也较高。[结论]研究证明了GRU神经网络在包含多个板的箱型梁结构裂纹损伤检测中的适用性。 展开更多
关键词 门控循环单元神经网络 箱型梁 裂纹检测 噪声
下载PDF
基于门控循环单元神经网络的公交到站时间预测 被引量:4
8
作者 陆俊天 孙玲 施佺 《南通大学学报(自然科学版)》 CAS 2020年第2期43-49,共7页
为提高用户公交出行积极性、方便管理部门合理调度公交班次,利用大数据分析公交浮动车辆历史GPS数据,考虑不同线路、公交站点地理位置、不同驾驶员、气象情况、时间分布等多因素的影响,建立了一种基于门控循环单元(gated recurrent unit... 为提高用户公交出行积极性、方便管理部门合理调度公交班次,利用大数据分析公交浮动车辆历史GPS数据,考虑不同线路、公交站点地理位置、不同驾驶员、气象情况、时间分布等多因素的影响,建立了一种基于门控循环单元(gated recurrent unit, GRU)神经网络的公交到站时间预测模型。该模型结合5 000多万条原始数据,借助分布式Hadoop集群中的Spark弹性分布式数据集进行数据清理,并运用站点匹配算法进行源数据匹配、Lasso算法优化特征选项及去除干扰。实验仿真结果表明:改进的GRU模型R-square拟合度达到94.547%,并且算法效率较传统长短期记忆(long short-term memory,LSTM)神经网络提高了近14%,为进一步提高公交到站时间的预测精度与效率提供了参考。 展开更多
关键词 公交到站时间预测 深度学习 门控循环单元神经网络
下载PDF
基于门控循环单元神经网络的测井曲线预测方法 被引量:3
9
作者 滕建强 邱萌 +3 位作者 杨明任 申辉林 曲萨 孙启鹏 《油气地质与采收率》 CAS CSCD 北大核心 2023年第1期93-100,共8页
为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LS... 为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LSTM)的输入门和遗忘门合并成更新门,输出门变成重置门,使模型结构简单,不易出现过拟合现象,保留LSTM模型的长时记忆功能,且能有效缓解梯度消失或梯度爆炸问题。以新疆油田直井和南海西部油田随钻测井的实际测井数据为例,选取已钻地层以及邻井的自然伽马、深感应电阻率、声波时差、密度和井径5条测井曲线数据作为训练样本输入到LSTM和GRU模型中进行学习训练,将训练好的模型用于预测未钻地层的测井曲线。应用结果表明,GRU比LSTM模型在新疆油田和南海西部油田预测测井曲线的平均相关系数分别提高13.78%和12.13%,平均均方根误差分别下降27.08%和42.17%,GRU模型能够准确地预测未钻地层测井曲线的变化趋势。 展开更多
关键词 随钻测井 长时记忆 测井曲线预测 未钻地层 门控循环单元神经网络
下载PDF
基于门控循环单元神经网络的大跨径斜拉桥索力预测 被引量:1
10
作者 郭新宇 方圣恩 《振动工程学报》 EI CSCD 北大核心 2023年第6期1480-1484,共5页
拉索索力的改变直接反映斜拉桥结构体系受力状态的变化,因此索力监测对斜拉桥健康评估具有重要意义。然而现有关于索力的研究大多为索力识别,难以做到根据历史索力数据实现对未来索力的预测。为此,提出一种基于门控循环单元(GRU)神经网... 拉索索力的改变直接反映斜拉桥结构体系受力状态的变化,因此索力监测对斜拉桥健康评估具有重要意义。然而现有关于索力的研究大多为索力识别,难以做到根据历史索力数据实现对未来索力的预测。为此,提出一种基于门控循环单元(GRU)神经网络的索力预测方法:利用GRU神经网络对时序型数据的处理能力以及索力数据较强的序列化特性,搭建基于GRU神经网络的索力预测框架,该预测框架包含输入层、GRU隐藏层与输出层;利用实桥连续采集的索应力时程数据作为训练及验证样本,对样本进行数据切片和归一化;搭建能够实现对该桥未来索力进行预测的GRU神经网络,结合梯度下降优化算法进行网络计算。结果表明所提方法对不同长度的拉索都具有较好的预测效果。 展开更多
关键词 大跨径斜拉桥 索力预测 门控循环单元神经网络 数据切片和归一化
下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
11
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
下载PDF
基于经验模态分解的门控循环单元神经网络的锂离子电池荷电状态估计 被引量:19
12
作者 李宁 何复兴 +2 位作者 马文涛 蒋林 张小平 《电工技术学报》 EI CSCD 北大核心 2022年第17期4528-4536,共9页
锂离子电池荷电状态(SOC)估计技术是电动汽车电池监测系统(BMS)设计的重要组成部分。该文提出一种基于经验模态分解(EMD)的门控循环单元(GRU)神经网络的锂离子电池荷电状态估计方法,在GRU估计SOC的基础上,引入EMD算法分解放电电流,不仅... 锂离子电池荷电状态(SOC)估计技术是电动汽车电池监测系统(BMS)设计的重要组成部分。该文提出一种基于经验模态分解(EMD)的门控循环单元(GRU)神经网络的锂离子电池荷电状态估计方法,在GRU估计SOC的基础上,引入EMD算法分解放电电流,不仅提高GRU模型对长时间电流信号保持长期信息的能力,而且提高锂离子电池荷电状态估计精度。仿真实验表明,与传统的循环神经网络和长短期记忆网络相比,该文所提基于EMD-GRU方法的锂离子电池SOC估计平均绝对误差为1.5093%,同比降低了20.7924%。 展开更多
关键词 锂离子电池 荷电状态估计 门控循环单元 经验模态分解
下载PDF
基于门控循环单元神经网络的燃煤电厂脱硝系统建模研究 被引量:1
13
作者 倪煜 李德波 陶叶 《电力勘测设计》 2021年第9期24-29,共6页
采用某燃煤电厂1 000 MW机组实际运行数据,通过机理分析SCR出口NOX浓度与脱硝效率的各主要影响因素,使用门控循环单元神经网络建立SCR出口NOX浓度和脱硝效率预测模型。预测结果表明建立的SCR出口NOX浓度和脱硝效率预测模型的精度高于传... 采用某燃煤电厂1 000 MW机组实际运行数据,通过机理分析SCR出口NOX浓度与脱硝效率的各主要影响因素,使用门控循环单元神经网络建立SCR出口NOX浓度和脱硝效率预测模型。预测结果表明建立的SCR出口NOX浓度和脱硝效率预测模型的精度高于传统的RBF、LSSVM、RNN和LSTM模型,分别达到99.52%和99.63%。 展开更多
关键词 燃煤电厂 NOX浓度预测 门控循环单元神经网络 脱硝效率预测
下载PDF
基于门控循环单元神经网络的NO_(x)排放量预测 被引量:6
14
作者 杨国田 刘凯 王英男 《控制工程》 CSCD 北大核心 2022年第7期1204-1209,共6页
电站燃煤锅炉产生的排放是大气NO_(x)污染的主要来源之一,建立有效的NO_(x)排放模型是锅炉燃烧优化降低NO_(x)排放的基础。为充分地挖掘数据源与锅炉NO_(x)排放量的相关性,提出一种基于多层门控循环单元神经网络(GRU)的NO_(x)排放预测... 电站燃煤锅炉产生的排放是大气NO_(x)污染的主要来源之一,建立有效的NO_(x)排放模型是锅炉燃烧优化降低NO_(x)排放的基础。为充分地挖掘数据源与锅炉NO_(x)排放量的相关性,提出一种基于多层门控循环单元神经网络(GRU)的NO_(x)排放预测模型。首先,利用主成分分析对火电厂高维数据进行处理;然后,将提取的主成分作为GRU网络的输入,得到锅炉NO_(x)排放预测模型。以某660 MW电厂实际运行数据对模型进行了验证,仿真结果表明多层GRU模型具有较高的预测精度和较强的鲁棒性,可以更有效地对火电厂NO_(x)排放量进行预测。 展开更多
关键词 循环神经网络 深度学习 门控循环单元 NO_(x)排放预测
下载PDF
基于门控循环单元神经网络的广告点击率预估 被引量:3
15
作者 陈巧红 董雯 +1 位作者 孙麒 贾宇波 《浙江理工大学学报(自然科学版)》 2018年第5期587-592,共6页
为提高在线广告的投放效果,改善用户广告体验度,增加广告收益,提出了一种基于门控循环单元神经网络模型的广告点击率预估方法。该方法结合了门控循环单元网络特有的门控单元结构和广告数据时序性特点,利用按时间反向传播算法训练网络模... 为提高在线广告的投放效果,改善用户广告体验度,增加广告收益,提出了一种基于门控循环单元神经网络模型的广告点击率预估方法。该方法结合了门控循环单元网络特有的门控单元结构和广告数据时序性特点,利用按时间反向传播算法训练网络模型;提出一种门控循环单元神经网络训练步长改进算法,使得训练时间更少,模型更加精确。实验表明,与逻辑斯特回归、随机森林、朴素贝叶斯和循环神经网络模型相比,提出的方法在广告点击率预估的概率上更准确,有助于广告主、媒体和目标受众用户三方博弈,实现共赢。 展开更多
关键词 在线广告 门控循环单元 点击率 按时间反向传播 三方博弈
下载PDF
基于Savitzky-Golay滤波的双向门控循环单元神经网络汽轮机热耗率预测 被引量:3
16
作者 马良玉 王永军 《科学技术与工程》 北大核心 2020年第9期3623-3628,共6页
汽轮机热耗率是火电机组运行过程中的一项重要监测指标。为建立更加准确的汽轮机热耗率预测模型,借助某1 000 MW火电机组的真实历史数据,提出一种基于双向门控循环单元(gated recurrent unit,GRU)神经网络的汽轮机热耗率预测模型。针对... 汽轮机热耗率是火电机组运行过程中的一项重要监测指标。为建立更加准确的汽轮机热耗率预测模型,借助某1 000 MW火电机组的真实历史数据,提出一种基于双向门控循环单元(gated recurrent unit,GRU)神经网络的汽轮机热耗率预测模型。针对火电机组现场运行数据噪声大的问题,采用SG(Savitzky-Golay)滤波器对所选变量数据进行降噪处理,将处理后的数据作为建模样本构建双向GRU神经网络汽轮机热耗率预测模型。并将其与BP(back propagation)神经网络、传统循环神经网络等2种算法的模型预测结果进行对比,结果表明:双向GRU神经网络热耗率预测模型的预测精度更高,泛化能力和鲁棒性更强,能够满足现场的实际需求。 展开更多
关键词 汽轮机热耗率 Savitzky-Golay 循环神经网络 门控循环单元 时间序列
下载PDF
基于深度门控循环单元神经网络的短期风功率预测模型 被引量:97
17
作者 牛哲文 余泽远 +1 位作者 李波 唐文虎 《电力自动化设备》 EI CSCD 北大核心 2018年第5期36-42,共7页
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进... 随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。 展开更多
关键词 风功率预测 深度神经网络 门控循环单元 卷积神经网络
下载PDF
基于门控循环单元神经网络的金融时间序列预测 被引量:15
18
作者 张金磊 罗玉玲 付强 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期82-89,共8页
针对循环神经网络(recurrent neural networks,RNN)网络结构存在的长期依赖问题,门控循环单元(gated recurrent unit,GRU)神经网络作为RNN的一种变体被提出。在继承RNN对时间序列优秀记忆能力的前提下,GRU克服了时间序列的长期依赖问题... 针对循环神经网络(recurrent neural networks,RNN)网络结构存在的长期依赖问题,门控循环单元(gated recurrent unit,GRU)神经网络作为RNN的一种变体被提出。在继承RNN对时间序列优秀记忆能力的前提下,GRU克服了时间序列的长期依赖问题。本文针对金融时间序列数据存在的依赖问题,将GRU扩展应用到金融时间序列预测,提出了基于差分运算与GRU神经网络相结合的金融时间序列预测模型。该模型能够处理金融时间序列数据的复杂特征,如非线性、非平稳性和序列相关性。通过对标准普尔(S&P)500股票指数的调整后收盘价进行预测,实验结果表明,所提出的方案能够提高GRU神经网络的泛化能力和预测精度,并且与传统预测模型相比该模型对金融时间序列的预测拥有更好的预测效果和相对较低的计算开销。 展开更多
关键词 循环神经网络 门控循环单元 差分运算 金融时间序列预测 深度学习
下载PDF
基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法 被引量:4
19
作者 朱文凯 周星 +2 位作者 刘亚杰 张涛 宋元明 《储能科学与技术》 CAS CSCD 北大核心 2023年第2期570-578,共9页
锂离子电池荷电状态(state of charge,SOC)的准确估计对于保证电池系统安全运行至关重要。目前基于门控循环单元(gated recurrent unit,GRU)等循环神经网络的SOC估计方法得到了广泛关注,其无需预设电池模型即可实现SOC准确估计。然而,... 锂离子电池荷电状态(state of charge,SOC)的准确估计对于保证电池系统安全运行至关重要。目前基于门控循环单元(gated recurrent unit,GRU)等循环神经网络的SOC估计方法得到了广泛关注,其无需预设电池模型即可实现SOC准确估计。然而,这类估计方法存在计算复杂度过高而难以在工程中实际应用的问题。针对传统GRU神经网络估计SOC时需要进行大量隐状态迭代而导致计算复杂度过高的问题,提出了网络隐状态时序继承的递推更新方式,通过改进GRU网络的输出结构,从而实现了仅需对当前时刻采样数据进行一次网络计算即可准确获取当前时刻SOC估计值。与文献中报道传统GRU方法相比,该递推GRU方法在保证SOC估计准确度不降低的情况下,能减少99%以上的计算量,具有较好的应用前景。此外,针对部分应用场景中电池训练数据缺乏的问题,方法能够结合迁移学习来快速完成网络训练。通过实验室测试数据集以及公开数据集进行验证,该方法能对不同温度环境、不同老化状态以及不同型号的锂离子电池进行准确SOC估计,其最大估计误差均不高于3%。 展开更多
关键词 锂离子电池 门控循环神经网络 迁移学习 荷电状态
下载PDF
基于门控循环单元神经网络的LED寿命预测方法
20
作者 龚晓春 朱云 +2 位作者 李晟 颜建堂 李玉晓 《照明工程学报》 2022年第6期93-101,共9页
LED寿命预测仍存在预测结果准确性不高、预测速度不足等问题。本文提出了一种基于门控循环单元神经网络的LED寿命预测方法,提出利用门控循环单元简化神经网络预测模型,并将模型输入数据的长度设置为变量,使预测过程能够考虑更多的LED历... LED寿命预测仍存在预测结果准确性不高、预测速度不足等问题。本文提出了一种基于门控循环单元神经网络的LED寿命预测方法,提出利用门控循环单元简化神经网络预测模型,并将模型输入数据的长度设置为变量,使预测过程能够考虑更多的LED历史退化信息;再采集LED流明维持数据作为训练样本,训练寿命预测模型;最后利用训练好的模型对LED进行寿命预测实验,并与其他三种方法进行对比。实验结果表明,本文方法具有更高的预测准确度和更快的预测速度,且具有良好的鲁棒性。 展开更多
关键词 LED 门控循环单元 寿命预测 神经网络
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部