为了在去除高斯噪声的同时更有效地保持图像的边缘和细节,提出了信噪局部方差自适应的小波滤波方法.根据图像与高斯噪声的小波系数的分布特征,提出了一种信噪局部方差自适应的阈值.同时,鉴于无噪图像的小波系数具有平滑连贯性,提出一种...为了在去除高斯噪声的同时更有效地保持图像的边缘和细节,提出了信噪局部方差自适应的小波滤波方法.根据图像与高斯噪声的小波系数的分布特征,提出了一种信噪局部方差自适应的阈值.同时,鉴于无噪图像的小波系数具有平滑连贯性,提出一种连续的、可微的且无限逼近原小波系数的阈值函数.阈值依据信噪强度对信号系数与噪声系数进行区分,阈值函数依据阈值对小波系数进行量化处理,以去除噪声.实验结果表明,所提出的方法对图像去噪所得的PSNR(peak signal to noise ratio)和SSIM(structural similarity index)值以及图像的视觉效果,相对于现有的小波去噪方法有较大的提升,在彻底去除高斯噪声同时,更有效地保持图像的边缘和细节.展开更多
文摘为了在去除高斯噪声的同时更有效地保持图像的边缘和细节,提出了信噪局部方差自适应的小波滤波方法.根据图像与高斯噪声的小波系数的分布特征,提出了一种信噪局部方差自适应的阈值.同时,鉴于无噪图像的小波系数具有平滑连贯性,提出一种连续的、可微的且无限逼近原小波系数的阈值函数.阈值依据信噪强度对信号系数与噪声系数进行区分,阈值函数依据阈值对小波系数进行量化处理,以去除噪声.实验结果表明,所提出的方法对图像去噪所得的PSNR(peak signal to noise ratio)和SSIM(structural similarity index)值以及图像的视觉效果,相对于现有的小波去噪方法有较大的提升,在彻底去除高斯噪声同时,更有效地保持图像的边缘和细节.