阵元失效下多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达虚拟阵列协方差矩阵出现大批整行整列元素缺失,破坏原有内在完整结构,导致波达方向(Direction of Arrival,DOA)估计性能下降。为此,提出一种联合核范数和SCAD(Smoothly...阵元失效下多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达虚拟阵列协方差矩阵出现大批整行整列元素缺失,破坏原有内在完整结构,导致波达方向(Direction of Arrival,DOA)估计性能下降。为此,提出一种联合核范数和SCAD(Smoothly Clipped Absolute Deviation)惩罚的完整协方差矩阵重构方法,以利于阵元失效下MIMO雷达DOA的有效估计。首先对待恢复的协方差矩阵建立核范数和SCAD惩罚双先验约束模型,并利用等正弦空间稀疏化方式划分粗网格空间,在可容忍的模型误差内能大大降低运算复杂度;然后利用ALM-ADMM(Augmented Lagrange Multipliers-Alternating Direction Method of Multipliers)算法对双先验约束模型进行求解,从而恢复协方差矩阵中大量整行整列的缺失数据;最后通过RD-ESPRIT(Reduced Dimensional ESPRIT)算法进行目标DOA估计。仿真结果验证该方法能快速恢复虚拟协方差矩阵中的缺失数据,从而有效提高阵元失效下MIMO雷达的DOA估计性能。展开更多
在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶...在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶化甚至完全失效。针对上述问题,提出了一种接收阵元失效下基于协方差矩阵重构的MIMO雷达DOA估计方法。该方法根据MIMO雷达协方差矩阵中以接收阵元数划分的子方块矩阵具有Toeplitz特性,利用正常工作接收阵元的协方差矩阵元素来恢复相应的缺失元素,从而重构出完整的数据协方差矩阵,提高阵元失效MIMO雷达的DOA估计性能。仿真结果验证了所提方法的有效性。展开更多
为解决波达方向(Direction Of Arrival,DOA)估计方法在阵元失效条件下性能下降甚至失效的问题,本文提出一种基于Toeplitz协方差矩阵重构的DOA估计方法.首先,提出了一种失效阵元检测方法,并根据阵列的鲁棒性将失效阵元分为冗余阵元失效...为解决波达方向(Direction Of Arrival,DOA)估计方法在阵元失效条件下性能下降甚至失效的问题,本文提出一种基于Toeplitz协方差矩阵重构的DOA估计方法.首先,提出了一种失效阵元检测方法,并根据阵列的鲁棒性将失效阵元分为冗余阵元失效和非冗余阵元失效两种情况.然后,分别针对两种失效场景提出相应DOA估计方法:一是冗余阵元失效,利用阵列冗余度,结合差联合阵列对失效阵元进行填充;二是非冗余阵元失效,利用阵列冗余度进行填充后仍存在空洞,结合矩阵填充理论,用迹范数代替秩范数进行凸松弛以恢复协方差矩阵,进而实现对虚拟阵元空洞的填充,恢复阵列自由度.相对于稀疏类算法,有效消除了模型失配的影响.最后,基于子空间方法进行DOA估计.理论和仿真结果表明,相对于现有方法,本文方法有效避免了阵元失效的影响,提高了估计精度.展开更多
文摘阵元失效下多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达虚拟阵列协方差矩阵出现大批整行整列元素缺失,破坏原有内在完整结构,导致波达方向(Direction of Arrival,DOA)估计性能下降。为此,提出一种联合核范数和SCAD(Smoothly Clipped Absolute Deviation)惩罚的完整协方差矩阵重构方法,以利于阵元失效下MIMO雷达DOA的有效估计。首先对待恢复的协方差矩阵建立核范数和SCAD惩罚双先验约束模型,并利用等正弦空间稀疏化方式划分粗网格空间,在可容忍的模型误差内能大大降低运算复杂度;然后利用ALM-ADMM(Augmented Lagrange Multipliers-Alternating Direction Method of Multipliers)算法对双先验约束模型进行求解,从而恢复协方差矩阵中大量整行整列的缺失数据;最后通过RD-ESPRIT(Reduced Dimensional ESPRIT)算法进行目标DOA估计。仿真结果验证该方法能快速恢复虚拟协方差矩阵中的缺失数据,从而有效提高阵元失效下MIMO雷达的DOA估计性能。
文摘在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶化甚至完全失效。针对上述问题,提出了一种接收阵元失效下基于协方差矩阵重构的MIMO雷达DOA估计方法。该方法根据MIMO雷达协方差矩阵中以接收阵元数划分的子方块矩阵具有Toeplitz特性,利用正常工作接收阵元的协方差矩阵元素来恢复相应的缺失元素,从而重构出完整的数据协方差矩阵,提高阵元失效MIMO雷达的DOA估计性能。仿真结果验证了所提方法的有效性。
文摘为解决波达方向(Direction Of Arrival,DOA)估计方法在阵元失效条件下性能下降甚至失效的问题,本文提出一种基于Toeplitz协方差矩阵重构的DOA估计方法.首先,提出了一种失效阵元检测方法,并根据阵列的鲁棒性将失效阵元分为冗余阵元失效和非冗余阵元失效两种情况.然后,分别针对两种失效场景提出相应DOA估计方法:一是冗余阵元失效,利用阵列冗余度,结合差联合阵列对失效阵元进行填充;二是非冗余阵元失效,利用阵列冗余度进行填充后仍存在空洞,结合矩阵填充理论,用迹范数代替秩范数进行凸松弛以恢复协方差矩阵,进而实现对虚拟阵元空洞的填充,恢复阵列自由度.相对于稀疏类算法,有效消除了模型失配的影响.最后,基于子空间方法进行DOA估计.理论和仿真结果表明,相对于现有方法,本文方法有效避免了阵元失效的影响,提高了估计精度.