近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术...近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术界广泛关注和系统性研究。同时,为充分发挥稀疏阵列的巨大优势,学者们已经从不同角度开发了一系列与之相适应的DOA估计算法,以进一步提高可分辨信源的数量和角度估计精度。本文在构建稀疏阵列信号模型和整理稀疏阵列相关术语的基础上,详细介绍了稀疏阵列结构设计及DOA估计算法的发展历程和代表性研究成果。在稀疏阵列结构设计方面,围绕自由度、互耦率和冗余度等核心指标,深入剖析了各类稀疏阵列结构的设计思想,并着重描述了嵌套和互质两类结构性稀疏阵列的连续自由度和自由度特征;在稀疏阵列DOA估计方面,根据信号参量构造原理的不同,阐述了基于物理阵列处理和虚拟阵列处理的两种测向理论,并分析了各自方法的适用条件和性能优势。此外,本文还回顾了稀疏阵列DOA估计的克拉美罗界(Cramér-Rao bound,CRB),为评估不同阵列和算法的优劣提供了重要依据。最后,通过梳理现有研究成果中存在的不足,对未来研究方向进行了展望,力图为稀疏阵列DOA估计的工程应用提供理论依据和技术支撑。展开更多
针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非...针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非线性收敛因子、优势狼动态置信策略和对立学习策略对灰狼优化(grey wolf optimizer,GWO)算法进行改进,增加算法的种群多样性和跳出局部最优的能力。然后,利用窗函数对阵列单元进行加权,生成位置分布矩阵,减少稀疏矩阵优化时间,提高优化效率。最后,利用位置分布矩阵生成稀疏阵列,再运用IGWO算法进行多约束条件的稀布优化。为验证所提方法的有效性进行了仿真实验,实验结果表明,本文方法可以有效提高阵列天线的性能,降低峰值旁瓣电平,对于解决在多约束条件下的阵列分布问题,具有一定的工程意义和参考价值。展开更多
文摘近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术界广泛关注和系统性研究。同时,为充分发挥稀疏阵列的巨大优势,学者们已经从不同角度开发了一系列与之相适应的DOA估计算法,以进一步提高可分辨信源的数量和角度估计精度。本文在构建稀疏阵列信号模型和整理稀疏阵列相关术语的基础上,详细介绍了稀疏阵列结构设计及DOA估计算法的发展历程和代表性研究成果。在稀疏阵列结构设计方面,围绕自由度、互耦率和冗余度等核心指标,深入剖析了各类稀疏阵列结构的设计思想,并着重描述了嵌套和互质两类结构性稀疏阵列的连续自由度和自由度特征;在稀疏阵列DOA估计方面,根据信号参量构造原理的不同,阐述了基于物理阵列处理和虚拟阵列处理的两种测向理论,并分析了各自方法的适用条件和性能优势。此外,本文还回顾了稀疏阵列DOA估计的克拉美罗界(Cramér-Rao bound,CRB),为评估不同阵列和算法的优劣提供了重要依据。最后,通过梳理现有研究成果中存在的不足,对未来研究方向进行了展望,力图为稀疏阵列DOA估计的工程应用提供理论依据和技术支撑。
文摘针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非线性收敛因子、优势狼动态置信策略和对立学习策略对灰狼优化(grey wolf optimizer,GWO)算法进行改进,增加算法的种群多样性和跳出局部最优的能力。然后,利用窗函数对阵列单元进行加权,生成位置分布矩阵,减少稀疏矩阵优化时间,提高优化效率。最后,利用位置分布矩阵生成稀疏阵列,再运用IGWO算法进行多约束条件的稀布优化。为验证所提方法的有效性进行了仿真实验,实验结果表明,本文方法可以有效提高阵列天线的性能,降低峰值旁瓣电平,对于解决在多约束条件下的阵列分布问题,具有一定的工程意义和参考价值。