期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于IPSO-Elman的气液两相流含气率测量方法
1
作者 仝卫国 李茂冉 +1 位作者 石宗锦 寇德龙 《中国测试》 CAS 北大核心 2024年第7期26-32,62,共8页
为安全且非侵入式地测量气液两相流含气率,提出一种电阻层析成像(ERT)陈列电阻与Elman神经网络相结合的含气率测量方法。首先,为加快模型训练速度并避免数据冗余,使用主成分分析(PCA)算法对120维的阵列电阻特征降维。然后,在粒子群(PSO... 为安全且非侵入式地测量气液两相流含气率,提出一种电阻层析成像(ERT)陈列电阻与Elman神经网络相结合的含气率测量方法。首先,为加快模型训练速度并避免数据冗余,使用主成分分析(PCA)算法对120维的阵列电阻特征降维。然后,在粒子群(PSO)算法中引入自适应惯性权重和非线性学习因子,并加入遗传算法(GA)的交叉和变异行为以加快算法收敛速度。最后,通过改进的粒子群(IPSO)算法优化Elman神经网络初始权值和阈值,并建立含气率测量模型。经对比实验发现,PCA-IPSO-Elman含气率测量模型的平均绝对百分比误差为2.92%,且训练时间较IPSO-Elman模型减少68.8%。说明所提方法可以达到预期的测量效果。 展开更多
关键词 气液两相流 截面含气率 改进粒子群 ELMAN神经网络 阵列电阻值
下载PDF
基于多层感知器的气液两相流流型识别方法 被引量:9
2
作者 仝卫国 朱赓宏 《热能动力工程》 CAS CSCD 北大核心 2020年第6期116-122,共7页
通过对电阻层析成像数据采集原理和深度学习网络的研究,提出了一种基于阵列电阻值和多层感知器深度学习网络相结合的流型识别方法。利用电阻层析成像系统中的16个电极传感器来获取流型样本数据,并构建出流型识别数据库,然后对多层感知... 通过对电阻层析成像数据采集原理和深度学习网络的研究,提出了一种基于阵列电阻值和多层感知器深度学习网络相结合的流型识别方法。利用电阻层析成像系统中的16个电极传感器来获取流型样本数据,并构建出流型识别数据库,然后对多层感知器深度学习网络进行训练,获得可以识别不同流型的网络。实验结果表明,采用阵列电阻值结合多层感知器网络对流型进行学习和识别的方法,流型识别准确率可以达到95%,解决了流型图像生成过程与数据特征预选过程中流型特征损失的问题,流型识别性能得到了提高。 展开更多
关键词 电阻层析成像 阵列电阻值 多层感知器网络 电极传感器 流型识别
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部