非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维...非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程的系列新的精确行波解。The Ablowitz-Kaup-Newell-Segur (AKNS) equations, a class of nonlinear partial differential equations, find their utility in a wide array of applications. The space-time fractional (2 + 1)-dimensional AKNS equation, in particular, is capable of describing the physical process of solitary wave propagation in optical fibers. A new class of exact traveling wave solutions of (2 + 1)-dimensional generalized fractional AKNS equation are obtained by employing complex traveling wave transformation and extended Tanh expansion method.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Grant Nos.ZR2020MA032,ZR2022MA029)the National Natural Science Foundation of China(Grant No.72171133)the high-quality course for postgraduate education in Shandong Province《Intermediate Econometrics(Graded Teaching)》(SDYKC21137).
文摘非线性Ablowitz-Kaup-Newell-Segur方程是一类应用广泛的非线性偏微分方程。(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程常用于描述孤立波在光纤中传播的物理过程,本文利用复行波变换和扩展的Tanh-函数展开法,获得了(2 + 1)维空时分数阶Ablowitz-Kaup-Newell-Segur方程的系列新的精确行波解。The Ablowitz-Kaup-Newell-Segur (AKNS) equations, a class of nonlinear partial differential equations, find their utility in a wide array of applications. The space-time fractional (2 + 1)-dimensional AKNS equation, in particular, is capable of describing the physical process of solitary wave propagation in optical fibers. A new class of exact traveling wave solutions of (2 + 1)-dimensional generalized fractional AKNS equation are obtained by employing complex traveling wave transformation and extended Tanh expansion method.