周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利...周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利用单片机共时钟基准的模/数转换器(digital to analog convertor,DAC)与数/模转换器(analog to digital convertor,ADC)模块,在完成激励信号产生、输入输出信号同步采集的基础上,合理设计激励信号频率、采集频率与信号重构方法,实现高频信号单周期内均匀相位分布的等效高频采样,同时为克服常规A/D转换速度条件下难以准确实现高频阻抗谱测量的问题提供了新思路。从误差假设与拟合算法的角度,理论上分析证明了该方法降低误差的原因。并通过两种等效电路模型的阻抗谱测量对比实验,表明该方法在所设计的20~100 kHz高频段上,阻抗测量精度与稳定性得到了显著的提高。展开更多
电池健康状态(state of health,SOH)是保证系统安全稳定运行的关键,健康状态估计不准将影响电池的使用性能,甚至引发电池滥用等问题。电池电化学阻抗谱通过宽频范围内电池的阻抗特征来反映其内部的电化学过程,蕴含了大量电池老化信息,...电池健康状态(state of health,SOH)是保证系统安全稳定运行的关键,健康状态估计不准将影响电池的使用性能,甚至引发电池滥用等问题。电池电化学阻抗谱通过宽频范围内电池的阻抗特征来反映其内部的电化学过程,蕴含了大量电池老化信息,已经逐渐成为分析锂离子电池性能的有力工具。然而,传统的电池阻抗谱测试方法耗时长、成本高昂。为此,以实现锂离子电池的精细化检测与健康状态快速评估为目标,围绕基于电化学阻抗谱重构技术的电池健康状态估计方法展开研究。通过逆重复最大长度序列设计多频电流激励信号,实现了电池阻抗谱的快速测试。采用连续小波变换开展阻抗谱重构,从而获取目标频率范围内的电池阻抗信息,整个过程耗时小于4.5 min。通过不同老化状态电池在特殊频率点下的重构阻抗幅值建立经验模型,实现了电池健康状态的快速准确评估。展开更多
文摘周期性信号采样中,等效采样利用较低采样频率的A/D转换实现高频周期信号的采集,一定程度上弥补欠采样测量精度低的缺陷。为了有效地提高高频测量中阻抗谱测量精度与稳定性,提出一种基于等效采样思想的均匀相位采样的阻抗谱测量方法。利用单片机共时钟基准的模/数转换器(digital to analog convertor,DAC)与数/模转换器(analog to digital convertor,ADC)模块,在完成激励信号产生、输入输出信号同步采集的基础上,合理设计激励信号频率、采集频率与信号重构方法,实现高频信号单周期内均匀相位分布的等效高频采样,同时为克服常规A/D转换速度条件下难以准确实现高频阻抗谱测量的问题提供了新思路。从误差假设与拟合算法的角度,理论上分析证明了该方法降低误差的原因。并通过两种等效电路模型的阻抗谱测量对比实验,表明该方法在所设计的20~100 kHz高频段上,阻抗测量精度与稳定性得到了显著的提高。
文摘电池健康状态(state of health,SOH)是保证系统安全稳定运行的关键,健康状态估计不准将影响电池的使用性能,甚至引发电池滥用等问题。电池电化学阻抗谱通过宽频范围内电池的阻抗特征来反映其内部的电化学过程,蕴含了大量电池老化信息,已经逐渐成为分析锂离子电池性能的有力工具。然而,传统的电池阻抗谱测试方法耗时长、成本高昂。为此,以实现锂离子电池的精细化检测与健康状态快速评估为目标,围绕基于电化学阻抗谱重构技术的电池健康状态估计方法展开研究。通过逆重复最大长度序列设计多频电流激励信号,实现了电池阻抗谱的快速测试。采用连续小波变换开展阻抗谱重构,从而获取目标频率范围内的电池阻抗信息,整个过程耗时小于4.5 min。通过不同老化状态电池在特殊频率点下的重构阻抗幅值建立经验模型,实现了电池健康状态的快速准确评估。