多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超...多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测方法。构建基于最小平均包络熵的变分模态分解参数优化模型,将IES多元负荷分解为本征模态分量集合;基于统一信息系数法筛选多元负荷预测的日历、气象与负荷强相关特征;结合负荷本征模态分量集合、日历规则、气象环境与负荷数据,构建Bagging集成超短期多元负荷预测模型,并建立基于平均绝对百分比误差与决定系数的集成策略优化模型,进而得到最优集成策略与最终预测结果。以美国亚利桑那州立大学坦佩校区IES为对象展开仿真验证,结果表明,所提方法的电、热、冷负荷预测平均绝对百分比误差分别为1.9486%、2.0585%、2.5331%,相比其他预测方法具有更高准确率。展开更多
大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同...大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.展开更多
文摘针对移相器和功分器的功能融合设计,提出了一种基于慢波基片集成波导(Slow-Wave Substrate Integrated Waveguide,SW-SIW)的小型化移相功分器,两个输出分支等长带宽,可实现30°相移量.其中一个输出分支通过基片集成波导(Substrate Integrated Waveguide,SIW)实现,而另一个输出分支将互补开口谐振环(Complementary SplitRing Resonator,CSRR)加载在上层金属表面,代替传统SIW连续的金属表面,该CSRR由经典CSRR结构演变而来,同时为了降低由CSRR加载所造成的相位上的不稳定,在CSRR内部添加金属化通孔,实现SW-SIW,使得截止频率和相速度降低.测试结果表明,移相功分器在9.0~11.8 GHz频带范围内反射系数|S11|小于-10 d B,相对工作带宽为26.9%,插入损耗小于1.3 d B.两个输出端口的相位差稳定在30°±3°,幅度差小于1.4 d B,实现了等功率分配.所设计的移相功分器具有较小的尺寸和低制造成本,适合应用在相控阵天线中.
文摘多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测方法。构建基于最小平均包络熵的变分模态分解参数优化模型,将IES多元负荷分解为本征模态分量集合;基于统一信息系数法筛选多元负荷预测的日历、气象与负荷强相关特征;结合负荷本征模态分量集合、日历规则、气象环境与负荷数据,构建Bagging集成超短期多元负荷预测模型,并建立基于平均绝对百分比误差与决定系数的集成策略优化模型,进而得到最优集成策略与最终预测结果。以美国亚利桑那州立大学坦佩校区IES为对象展开仿真验证,结果表明,所提方法的电、热、冷负荷预测平均绝对百分比误差分别为1.9486%、2.0585%、2.5331%,相比其他预测方法具有更高准确率。
文摘大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能.