针对复杂工业过程中的非线性、非高斯特性以及多工况问题,提出了一种基于局部模型的在线统计监测新方法.首先利用局部最小二乘支持向量机回归(Least square support vector regression,LSSVR)模型对过程输出进行预测,与真实的输出相比...针对复杂工业过程中的非线性、非高斯特性以及多工况问题,提出了一种基于局部模型的在线统计监测新方法.首先利用局部最小二乘支持向量机回归(Least square support vector regression,LSSVR)模型对过程输出进行预测,与真实的输出相比较构成残差序列.然后利用ICA-PCA两步特征提取策略,完整地提取残差的高斯和非高斯信息,最后用三个统计量(I^2、T^2和SPE)对过程进行监测,建立了一种具有非线性、非高斯特性的多工况过程在线监测算法.通过对TE(Tennessee Eastman)过程的仿真研究,验证提出的方法是可行、有效的,并显示出了一定的故障检测能力.展开更多
为解决Curvelet图像去噪所产生的"环绕"效应以及非局部TV模型去噪过度平滑而无法保持细小纹理的问题,本文提出了一种基于Curvelet变换与非局部TV模型相结合的图像去噪方法(Curvelet and Non-Local TV,CNL-TV)。该方法首先对...为解决Curvelet图像去噪所产生的"环绕"效应以及非局部TV模型去噪过度平滑而无法保持细小纹理的问题,本文提出了一种基于Curvelet变换与非局部TV模型相结合的图像去噪方法(Curvelet and Non-Local TV,CNL-TV)。该方法首先对含噪图像进行Curvelet变换,将其分解成不同尺度的图像;其次根据每层图像的特性,选择合适的非局部TV模型参数分别进行处理;最后将处理后的每层图像融合。实验结果表明,该算法不仅能够有效地减少噪声,消除Curvelet去噪产生的"环绕"效应,而且最大程度地保持了图像中的细小纹理成分。通过比较不同方法所得结果的峰值信噪比,验证了算法的有效性。展开更多
文摘为解决Curvelet图像去噪所产生的"环绕"效应以及非局部TV模型去噪过度平滑而无法保持细小纹理的问题,本文提出了一种基于Curvelet变换与非局部TV模型相结合的图像去噪方法(Curvelet and Non-Local TV,CNL-TV)。该方法首先对含噪图像进行Curvelet变换,将其分解成不同尺度的图像;其次根据每层图像的特性,选择合适的非局部TV模型参数分别进行处理;最后将处理后的每层图像融合。实验结果表明,该算法不仅能够有效地减少噪声,消除Curvelet去噪产生的"环绕"效应,而且最大程度地保持了图像中的细小纹理成分。通过比较不同方法所得结果的峰值信噪比,验证了算法的有效性。