In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calcula...In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.展开更多
The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass ...The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.展开更多
A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on ...A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.展开更多
The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with ...The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with solidification structure analysis. The results indicate that the undercooling degree of Nd9Fe85-xTi4C2Bx(x=10, 12) alloys significantly increaseswith the rise of melt overheating degree, and two overheating degree thresholds corresponding to the drastic increase of the mean undercooling degree are found for each of the alloys. The existence of two turning points of the mean undercooling degreescan be linked to the structure transitions inside the overheated melts, which result in the evident increase of volume fraction of amorphous phasein the solidified structures.展开更多
The glass forming ability, thermal and mechanical properties of some Zr Cu Al Ni bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fra...The glass forming ability, thermal and mechanical properties of some Zr Cu Al Ni bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fragility index models. Cylindrical and conical ingots were produced by copper mould suction-casting under Ar atmosphere. The conical ingots were characterized by means of X-ray diffraction in order to determine the glassy structure. It was found that both alloys have a critical glassy diameter, Dc, of 3 mm. Thermal behaviours were investigated by differential scanning calorimetry at heating rates of 0.5, 0.67 and 0.83 K/s. The gamma parameter γ, supercooled liquid region ΔTx, and reduced glass transition temperature Trg, of the experimentally obtained glasses indicated high glass forming ability. The glassy compositions showed a fragility index of ~40 GPa. The compression test of the investigated alloys was carried out at a strain rate of 0.016 s^-1, obtaining a elastic modulus of ~83 GPa, total deformation of ~5%, yield strength of 1.6 GPa and hardness of 4 GPa. It was concluded that the use of the dense packing and kinetic fragility index models helped to predict glass-forming compositions in the family alloy investigated.展开更多
Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change...Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change glass transitiontemperature and onset crystallization temperature,while it enhances liquidus temperature.The addition of Cr improves the GFA ofthe(Fe74Nb6B20)100?xCrx glassy alloys compared to that in Cr-free Fe?Nb?B alloys,in which the supercooled liquid region(ΔTx),Trgandγare found to be50?54K,0.526?0.538,and0.367?0.371,respectively.The(Fe74Nb6B20)100?xCrx glassy alloys exhibit excellentsoft magnetic properties with high saturation magnetization of139?161A·m2/kg and low coercivity of30.24?58.9A/m.PresentFe?Nb?B?Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make themsuitable for magnetic components for engineering application.展开更多
This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review cove...This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.展开更多
The effects of Sn and Ga additions on the glass forming ability (GFA) of (A186LasNi9)100_xSnx(x=0, 0.2, 0.3, 0.5, 0.7, 1 and 2 at.%) and (Al86LasNi9)100_xGax(x=0, 0.2, 0.5, 1 and 1.5 at.%) alloys were system...The effects of Sn and Ga additions on the glass forming ability (GFA) of (A186LasNi9)100_xSnx(x=0, 0.2, 0.3, 0.5, 0.7, 1 and 2 at.%) and (Al86LasNi9)100_xGax(x=0, 0.2, 0.5, 1 and 1.5 at.%) alloys were systematically investigated. Unlike common microal- loying methods, both Sn and Ga have a positive heat of mixing with the main component of A1. Our analysis confirmed that proper Sn addition can suppress the strong formation of a-A1 and enhance the GFA due to the positive heat of mixing between Sn and AI and the large difference in their atomic sizes. While the addition of Ga to the base alloy acted as the nucleation cites for ct-Al and accelerated precipitation of the ct-A1 phase, thus deteriorating the GFA.展开更多
It was well known that it was very difficult to prepare high performance Fe-based bulk amorphous alloys with both high Fe content and good glass-forming ability, especially for the Fe content (or total magnetic eleme...It was well known that it was very difficult to prepare high performance Fe-based bulk amorphous alloys with both high Fe content and good glass-forming ability, especially for the Fe content (or total magnetic elements content) higher than 80 at%. In this paper, a series of Fe81-xCoxMO1P7.5C5.5B2Si3 (x = 0, 5, 10, 15, 20) bulk amorphous alloys (BAAs) with high saturation magnetization have been developed by copper mold casting method with fluxed ingot. It has been found that using Co replacing Fe in the Fe-Mo-P-C-B-Si alloy could significantly enhance the glass-forming ability and magnetic property. For the BAA with Co content of 0 at%, 5 at%, 10 at%, 15 at% and 20 at%, its saturation magnetization Js(Js=μoMs) was 1.55, 1.60, 1.62, 1.65 and 1.59 T, respectively. Among these alloys, the Fe66Co15- Mo1P7.5C5.5B2Si3 BAA exhibited a critical size of 2 mm in diameter and a high Js of 1.65 T. It suggested that these alloys with high magnetic element content possessed great potential in application due to their high glass-forming ability and high magnetic property.展开更多
The thermal stability,glass-forming ability(GFA) and mechanical properties of Zr60Al15Ni25xTMx(TM = Cu,Fe and Co,x = 0-10) bulk metallic glasses(BMGs) were systematically investigated.Additional 5-10 at.% Cu greatly e...The thermal stability,glass-forming ability(GFA) and mechanical properties of Zr60Al15Ni25xTMx(TM = Cu,Fe and Co,x = 0-10) bulk metallic glasses(BMGs) were systematically investigated.Additional 5-10 at.% Cu greatly enhances the thermal stability and GFA of the base alloy.Zr60Al15Ni15Cu10 BMG exhibits the largest supercooled liquid region of 104 K and critical diameter of 18 mm.However,addition of 5-10 at.% Fe or Co decrease the thermal stability and GFA.In addition,the plasticity of the BMG can be improved by adding of Cu,while the strength is decreased slightly.Zr60Al15Ni20Cu5 BMG has the largest plastic strain of 5.5% with a yield stress of 1755 MPa and Young's modulus of 83 GPa.Addition of Co brings an increase of strength but a lower of plasticity,and additional Fe reduces the strength and plasticity simultaneously.展开更多
Bulk amorphous formation in Ti-Cu-based multicomponent alloys, free of Ni, Pd and Be elements, were studied using the cluster-plus-glue-atom model. The basic cluster formula was revealed as [Ti9Cu6]Cu3 to explain the ...Bulk amorphous formation in Ti-Cu-based multicomponent alloys, free of Ni, Pd and Be elements, were studied using the cluster-plus-glue-atom model. The basic cluster formula was revealed as [Ti9Cu6]Cu3 to explain the best binary glass forming composition Ti50Cu50=Ti9Cu9, where the CN14 rhombi-dodecahedron Ti9Cu6 was the principal cluster in the devitrification phase CuTi. This basic cluster formula was further alloyed with Zr and Sn and a critical glass forming ability was reached at (Ti7.2Zr1.8)(Cus.72Sn0.28) and (Ti7.2Zr1.8)(Cu8.45Sn0.55) up to 5 mm in diameter by suction casting, which was the largest in Ti-Cu- based and Ni-, Pd- and Be-free alloys.展开更多
基金the financial supports from the Shenzhen Basic Research Project,China(No.JCYJ20170815153210359)the National Natural Science Foundation of China(No.12174210)。
文摘In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.
基金Project(50971041)support by the National Natural Science Foundation of China
文摘The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.
基金Project(50371016) supported by the National Natural Science Foundation of ChinaProject(50611130629) supported by the International Cooperation and Exchange of the National Natural Science Foundation of China
文摘A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.
基金Projects(51174121,51274125)supported by the National Natural Science Foundation of ChinaProject(2010R50016-30)supported by Zhejiang Province Science and Technology Innovation Team of Key Projects,ChinaProject supported by the K.C.Wong Magna Fund of Ningbo University,China
文摘The effectsof melt overheating degree on the undercooling degree and resultant solidification structures of Nd9Fe85-xTi4C2Bx(x=10, 12) glass-forming alloyswerestudied by differential thermal analysis combining with solidification structure analysis. The results indicate that the undercooling degree of Nd9Fe85-xTi4C2Bx(x=10, 12) alloys significantly increaseswith the rise of melt overheating degree, and two overheating degree thresholds corresponding to the drastic increase of the mean undercooling degree are found for each of the alloys. The existence of two turning points of the mean undercooling degreescan be linked to the structure transitions inside the overheated melts, which result in the evident increase of volume fraction of amorphous phasein the solidified structures.
基金the financial support from UNAM-DGAPA-PAPIIT thorough the project 101016CONACYT for the 232312 Ph D scholarship grant
文摘The glass forming ability, thermal and mechanical properties of some Zr Cu Al Ni bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fragility index models. Cylindrical and conical ingots were produced by copper mould suction-casting under Ar atmosphere. The conical ingots were characterized by means of X-ray diffraction in order to determine the glassy structure. It was found that both alloys have a critical glassy diameter, Dc, of 3 mm. Thermal behaviours were investigated by differential scanning calorimetry at heating rates of 0.5, 0.67 and 0.83 K/s. The gamma parameter γ, supercooled liquid region ΔTx, and reduced glass transition temperature Trg, of the experimentally obtained glasses indicated high glass forming ability. The glassy compositions showed a fragility index of ~40 GPa. The compression test of the investigated alloys was carried out at a strain rate of 0.016 s^-1, obtaining a elastic modulus of ~83 GPa, total deformation of ~5%, yield strength of 1.6 GPa and hardness of 4 GPa. It was concluded that the use of the dense packing and kinetic fragility index models helped to predict glass-forming compositions in the family alloy investigated.
基金Projects(51301125,51171136,51502234,51401156,11404251)supported by the National Natural Science Foundation of ChinaProject(2013JK0907)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,China
文摘Fe-based metallic glasses of(Fe74Nb6B20)100?xCrx(x=1,3,5)with high glass forming ability(GFA)and good magneticproperties were prepared using low-purity raw materials.Increasing Cr content does not significantly change glass transitiontemperature and onset crystallization temperature,while it enhances liquidus temperature.The addition of Cr improves the GFA ofthe(Fe74Nb6B20)100?xCrx glassy alloys compared to that in Cr-free Fe?Nb?B alloys,in which the supercooled liquid region(ΔTx),Trgandγare found to be50?54K,0.526?0.538,and0.367?0.371,respectively.The(Fe74Nb6B20)100?xCrx glassy alloys exhibit excellentsoft magnetic properties with high saturation magnetization of139?161A·m2/kg and low coercivity of30.24?58.9A/m.PresentFe?Nb?B?Cr glassy alloys exhibiting high GFA as well as excellent magnetic properties and low manufacturing cost make themsuitable for magnetic components for engineering application.
基金supported by Guangdong Innovative Research Team Program (2009010005)
文摘This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.
基金supported by the National Natural Science Foundation of China(Grant Nos.51010001 and 51001009)the 111 Project(Grant No.B07003)the Program for Changjiang Scholars and Innovative Research Team in University
文摘The effects of Sn and Ga additions on the glass forming ability (GFA) of (A186LasNi9)100_xSnx(x=0, 0.2, 0.3, 0.5, 0.7, 1 and 2 at.%) and (Al86LasNi9)100_xGax(x=0, 0.2, 0.5, 1 and 1.5 at.%) alloys were systematically investigated. Unlike common microal- loying methods, both Sn and Ga have a positive heat of mixing with the main component of A1. Our analysis confirmed that proper Sn addition can suppress the strong formation of a-A1 and enhance the GFA due to the positive heat of mixing between Sn and AI and the large difference in their atomic sizes. While the addition of Ga to the base alloy acted as the nucleation cites for ct-Al and accelerated precipitation of the ct-A1 phase, thus deteriorating the GFA.
基金supported by the National Natural Science Foundation of China (51271097)
文摘It was well known that it was very difficult to prepare high performance Fe-based bulk amorphous alloys with both high Fe content and good glass-forming ability, especially for the Fe content (or total magnetic elements content) higher than 80 at%. In this paper, a series of Fe81-xCoxMO1P7.5C5.5B2Si3 (x = 0, 5, 10, 15, 20) bulk amorphous alloys (BAAs) with high saturation magnetization have been developed by copper mold casting method with fluxed ingot. It has been found that using Co replacing Fe in the Fe-Mo-P-C-B-Si alloy could significantly enhance the glass-forming ability and magnetic property. For the BAA with Co content of 0 at%, 5 at%, 10 at%, 15 at% and 20 at%, its saturation magnetization Js(Js=μoMs) was 1.55, 1.60, 1.62, 1.65 and 1.59 T, respectively. Among these alloys, the Fe66Co15- Mo1P7.5C5.5B2Si3 BAA exhibited a critical size of 2 mm in diameter and a high Js of 1.65 T. It suggested that these alloys with high magnetic element content possessed great potential in application due to their high glass-forming ability and high magnetic property.
基金supported by the Fundamental Research Funds for the Central Universities of China(Grant Nos.DUT11RC(3)70 and DUT11RC(3)29)the National Natural Science Foundation of China (Grant No.51171034)the China Postdoctoral Science Foundation (Grant No.2012M510802)
文摘The thermal stability,glass-forming ability(GFA) and mechanical properties of Zr60Al15Ni25xTMx(TM = Cu,Fe and Co,x = 0-10) bulk metallic glasses(BMGs) were systematically investigated.Additional 5-10 at.% Cu greatly enhances the thermal stability and GFA of the base alloy.Zr60Al15Ni15Cu10 BMG exhibits the largest supercooled liquid region of 104 K and critical diameter of 18 mm.However,addition of 5-10 at.% Fe or Co decrease the thermal stability and GFA.In addition,the plasticity of the BMG can be improved by adding of Cu,while the strength is decreased slightly.Zr60Al15Ni20Cu5 BMG has the largest plastic strain of 5.5% with a yield stress of 1755 MPa and Young's modulus of 83 GPa.Addition of Co brings an increase of strength but a lower of plasticity,and additional Fe reduces the strength and plasticity simultaneously.
基金supported by the National Natural Science Foundation of China(Grant Nos. 51131002 and 51171035)the Fundamental Research Funds for the Central Universities(Grant No. DUT12LAB08)
文摘Bulk amorphous formation in Ti-Cu-based multicomponent alloys, free of Ni, Pd and Be elements, were studied using the cluster-plus-glue-atom model. The basic cluster formula was revealed as [Ti9Cu6]Cu3 to explain the best binary glass forming composition Ti50Cu50=Ti9Cu9, where the CN14 rhombi-dodecahedron Ti9Cu6 was the principal cluster in the devitrification phase CuTi. This basic cluster formula was further alloyed with Zr and Sn and a critical glass forming ability was reached at (Ti7.2Zr1.8)(Cus.72Sn0.28) and (Ti7.2Zr1.8)(Cu8.45Sn0.55) up to 5 mm in diameter by suction casting, which was the largest in Ti-Cu- based and Ni-, Pd- and Be-free alloys.