为解决非结构化复杂场景下基于搜索的寻路算法中存在的计算时间长、路径非最优等问题,在跳点搜索(jump point search,JPS)算法的基础上,提出一种带权重的跳点搜索(weighted jump point search,WJPS)算法。WJPS算法改进了启发式函数,同...为解决非结构化复杂场景下基于搜索的寻路算法中存在的计算时间长、路径非最优等问题,在跳点搜索(jump point search,JPS)算法的基础上,提出一种带权重的跳点搜索(weighted jump point search,WJPS)算法。WJPS算法改进了启发式函数,同时采用非传统的距离表达,最终实现了在保证全局路径最短的同时,降低了计算时间。为了验证WJPS算法的有效性,设计了多种非结构化复杂场景地图,对A、JPS算法和WJPS算法在寻路时间、扩展点数和路径长度3方面进行了对比。实验结果显示,相比A算法和JPS算法,WJPS算法在复杂环境中能保证生成路径是最短的,同时利用JPS跳点算法中寻找拓展点的策略,能够实现毫秒级别的规划,且算法效率能够满足智能体对路径规划层的要求。另外,WJPS算法采用微分平坦法对生成的路径点作曲线拟合,使智能体的运动轨迹更加平滑。展开更多
针对非结构化环境下自主式地面车辆(ALV)的负障碍物检测问题,提出一种基于多激光雷达与组合特征的方法.首先,设计了一种具有互补能力的多激光雷达安装方式.其次,提出了基于幅向局部凸性和后沿壁局部密集特征的64线雷达负障碍物特征点对...针对非结构化环境下自主式地面车辆(ALV)的负障碍物检测问题,提出一种基于多激光雷达与组合特征的方法.首先,设计了一种具有互补能力的多激光雷达安装方式.其次,提出了基于幅向局部凸性和后沿壁局部密集特征的64线雷达负障碍物特征点对检测方法,以及基于径向距离跳变和后沿壁局部密集特征的32线雷达负障碍物特征点对检测方法.进而从负障碍物的时空融合角度,采用贝叶斯法则对多传感器多帧特征点对进行融合,然后采用DBSCAN(density-based spatial clustering of applications with noise)对融合后的特征点对进行聚类与过滤.最后对数据进行栅格化,提取负障碍物栅格.实验结果表明,本方法在非结构化复杂地形环境下具有良好的负障碍物检测性能.展开更多
非结构化环境下,无人驾驶汽车的局部路径规划方法面临数据冗余及环境结构适用性问题。提出一种基于3维Lidar数据稀疏表示的局部路径规划建模方法——势场字典法(Potential field dictionary,PFD)。该方法以预置本地过完备DCT字典替代正...非结构化环境下,无人驾驶汽车的局部路径规划方法面临数据冗余及环境结构适用性问题。提出一种基于3维Lidar数据稀疏表示的局部路径规划建模方法——势场字典法(Potential field dictionary,PFD)。该方法以预置本地过完备DCT字典替代正交基,应用投影追踪方法(MP)结合环境采样预处理结果,对Lidar点云信息进行稀疏化分解;直接将稀疏分解矢量用于势场法局部路径规划,并提出"动态势场"以应对非结构化环境。实车试验表明:环境采样预处理结果储存空间小,且更能体现结构复杂程度;PFD算法以小稀疏度可以规划出完整连续可行路径,且性能优于RRT*算法以及传统势场算法。PFD算法在保证信息表达精度的前提下,减少了数据传输、储存成本,也可规划出适用于非结构化环境的局部路径。展开更多
文摘为解决非结构化复杂场景下基于搜索的寻路算法中存在的计算时间长、路径非最优等问题,在跳点搜索(jump point search,JPS)算法的基础上,提出一种带权重的跳点搜索(weighted jump point search,WJPS)算法。WJPS算法改进了启发式函数,同时采用非传统的距离表达,最终实现了在保证全局路径最短的同时,降低了计算时间。为了验证WJPS算法的有效性,设计了多种非结构化复杂场景地图,对A、JPS算法和WJPS算法在寻路时间、扩展点数和路径长度3方面进行了对比。实验结果显示,相比A算法和JPS算法,WJPS算法在复杂环境中能保证生成路径是最短的,同时利用JPS跳点算法中寻找拓展点的策略,能够实现毫秒级别的规划,且算法效率能够满足智能体对路径规划层的要求。另外,WJPS算法采用微分平坦法对生成的路径点作曲线拟合,使智能体的运动轨迹更加平滑。
文摘针对非结构化环境下自主式地面车辆(ALV)的负障碍物检测问题,提出一种基于多激光雷达与组合特征的方法.首先,设计了一种具有互补能力的多激光雷达安装方式.其次,提出了基于幅向局部凸性和后沿壁局部密集特征的64线雷达负障碍物特征点对检测方法,以及基于径向距离跳变和后沿壁局部密集特征的32线雷达负障碍物特征点对检测方法.进而从负障碍物的时空融合角度,采用贝叶斯法则对多传感器多帧特征点对进行融合,然后采用DBSCAN(density-based spatial clustering of applications with noise)对融合后的特征点对进行聚类与过滤.最后对数据进行栅格化,提取负障碍物栅格.实验结果表明,本方法在非结构化复杂地形环境下具有良好的负障碍物检测性能.
文摘非结构化环境下,无人驾驶汽车的局部路径规划方法面临数据冗余及环境结构适用性问题。提出一种基于3维Lidar数据稀疏表示的局部路径规划建模方法——势场字典法(Potential field dictionary,PFD)。该方法以预置本地过完备DCT字典替代正交基,应用投影追踪方法(MP)结合环境采样预处理结果,对Lidar点云信息进行稀疏化分解;直接将稀疏分解矢量用于势场法局部路径规划,并提出"动态势场"以应对非结构化环境。实车试验表明:环境采样预处理结果储存空间小,且更能体现结构复杂程度;PFD算法以小稀疏度可以规划出完整连续可行路径,且性能优于RRT*算法以及传统势场算法。PFD算法在保证信息表达精度的前提下,减少了数据传输、储存成本,也可规划出适用于非结构化环境的局部路径。