基于全程波波动方程的逆时偏移(Reverse Time Migration)可以对回转波、多次反射波成像,不受横向速度变化影响,没有倾角限制,随着计算机软硬件技术的进步,再次成为偏移方法研究热点.本文将格子法用于叠前逆时深度偏移成像.格子法作为波...基于全程波波动方程的逆时偏移(Reverse Time Migration)可以对回转波、多次反射波成像,不受横向速度变化影响,没有倾角限制,随着计算机软硬件技术的进步,再次成为偏移方法研究热点.本文将格子法用于叠前逆时深度偏移成像.格子法作为波场延拓方法,处理起伏地表边界条件容易,可用于含起伏地表边界条件的逆时波场延拓;可利用变尺度非规则对计算域进行离散,因此可根据速度模型调整网格尺度来降低存储量,放大时间步长,降低计算量.采用光滑的曲人工边界,也可避免常规的PML吸收边界存在的角点区域需特别处理的麻烦.本方法通过事先计算和存储边界单元的局部几何参数,与直边界PML方法相比不增加任何计算量.格子法还具有容易实现并行计算的特点,非常适用于叠前逆时偏移.本文给出了二维问题算例.展开更多
When simulating the propagation of seismic waves in some special structures,such as tunnels and boreholes,finite difference forward modeling in the polar system has higher accuracy than the traditional Cartesian syste...When simulating the propagation of seismic waves in some special structures,such as tunnels and boreholes,finite difference forward modeling in the polar system has higher accuracy than the traditional Cartesian system.In actual situations,the polar space is the most irregular.To solve this problem,a forward modeling method for an irregular polar coordinate system is proposed to improve the simulation accuracy.First,an irregular surface of the polar space was meshed into an irregular polar system.After the transformation,the undulating surface was mapped into a plane one,and the wavefield was then computed in an irregular polar system.The Lebedev staggered grid was used to solve the wave equations in the irregular polar system.In addition,the artificial absorption boundary,cylindrical free boundary,and circumferential boundary conditions were used to absorb the boundary reflection.We selected three polar space models to demonstrate the new method in this study.The results show that the proposed elastic simulation method in an irregular polar coordinate system can produce more accurate and stable simulation results when modeling seismic wave propagation in an irregular polar space.Elastic full waveform inversion further shows that the irregular polar system elastic simulation method can accurately simulate the wavefield in an undulating polar space.展开更多
文摘基于全程波波动方程的逆时偏移(Reverse Time Migration)可以对回转波、多次反射波成像,不受横向速度变化影响,没有倾角限制,随着计算机软硬件技术的进步,再次成为偏移方法研究热点.本文将格子法用于叠前逆时深度偏移成像.格子法作为波场延拓方法,处理起伏地表边界条件容易,可用于含起伏地表边界条件的逆时波场延拓;可利用变尺度非规则对计算域进行离散,因此可根据速度模型调整网格尺度来降低存储量,放大时间步长,降低计算量.采用光滑的曲人工边界,也可避免常规的PML吸收边界存在的角点区域需特别处理的麻烦.本方法通过事先计算和存储边界单元的局部几何参数,与直边界PML方法相比不增加任何计算量.格子法还具有容易实现并行计算的特点,非常适用于叠前逆时偏移.本文给出了二维问题算例.
基金funded by the Science and Technology Project of CNPC Southwest Oil and Gas Field Branch (202,20301-01-03)。
文摘When simulating the propagation of seismic waves in some special structures,such as tunnels and boreholes,finite difference forward modeling in the polar system has higher accuracy than the traditional Cartesian system.In actual situations,the polar space is the most irregular.To solve this problem,a forward modeling method for an irregular polar coordinate system is proposed to improve the simulation accuracy.First,an irregular surface of the polar space was meshed into an irregular polar system.After the transformation,the undulating surface was mapped into a plane one,and the wavefield was then computed in an irregular polar system.The Lebedev staggered grid was used to solve the wave equations in the irregular polar system.In addition,the artificial absorption boundary,cylindrical free boundary,and circumferential boundary conditions were used to absorb the boundary reflection.We selected three polar space models to demonstrate the new method in this study.The results show that the proposed elastic simulation method in an irregular polar coordinate system can produce more accurate and stable simulation results when modeling seismic wave propagation in an irregular polar space.Elastic full waveform inversion further shows that the irregular polar system elastic simulation method can accurately simulate the wavefield in an undulating polar space.