Cu films on Fe, Ni and Ag substrates, Ni films on Fe and Ag substrates, Ag film on Cu substrate, Cr film on Fe substrate, Ag film on Ag substrate, Ni film on Ni substrate and Cu film on Cu substrate were deposited by ...Cu films on Fe, Ni and Ag substrates, Ni films on Fe and Ag substrates, Ag film on Cu substrate, Cr film on Fe substrate, Ag film on Ag substrate, Ni film on Ni substrate and Cu film on Cu substrate were deposited by electroplating. The average internal stress in all films, except Cr, was in-situ measured by the cantilever beam test. The interfacial stress is very large in the films with different materials with substrates and is zero in the films with the same material with substrates. The interfacial stress character obtained from the cantilever beam bending direction is consistent with that obtained from the modified Thomas–Fermi–Dirac electron theory.展开更多
Experiments on proton dissociation from the surfaces of goethite, amorphous Al oxide, kaolinite and latosolwere carried out, showing amphoteric behavior with reactions of proton dissociation-association on the surface...Experiments on proton dissociation from the surfaces of goethite, amorphous Al oxide, kaolinite and latosolwere carried out, showing amphoteric behavior with reactions of proton dissociation-association on the surfaces andbuffering capacity in such a sequence as amorphous Al oxide > latosol > kaolinite > goethite. Dissociation con-stants of surface proton, pK_(sa) are significantly correlated with surface charge density, which has been proved with anelectrochemical model. Tbe intrinsic constants of proton dissociation, K_(sa)(int), gained by extrapolation to zero charconditions of plots of pK_(sa) against σ_o, could be used to estimate the acidity strength of variable charge surfaces. Thevalue of pK_(sa)(int) is 8.08 for goethite, 1 .2 for amorphous Al oxide, 6.62 for kaolinite and 5 .32 for latosol.展开更多
The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH...The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.展开更多
The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured forc...The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.展开更多
The first Global Navigation Satellite System Occultation Sounder(GNOS) which is compatible of both Bei Dou System(BDS)and Global Positioning System(GPS) was successfully launched into orbit onboard the Feng Yun 3 C sa...The first Global Navigation Satellite System Occultation Sounder(GNOS) which is compatible of both Bei Dou System(BDS)and Global Positioning System(GPS) was successfully launched into orbit onboard the Feng Yun 3 C satellite(FY-3 C) on September 23, 2013, and it has already gathered a large amount of ionosphere radio occultation(RO) data so far. However, the detailed analysis and validation of GPS ionosphere RO data have not been done up to now. Therefore, this paper discusses the configuration of the FY-3 C GNOS, the methods and results of GPS ionosphere occultation processment, the quality analysis of the GPS ionosphere RO products, and the precision consistency between the GNOS GPS ionosphere RO product and ionosonde data. The peak electron density(Nm F2) correlation coefficient is 0.97, the corresponding standard deviation is 16.08%. The peak value altitude(hm F2) correlation coefficient is 0.89, and the corresponding standard deviation is 23.79 km. The in-orbit operation of GNOS provides a basis data set for the monitoring, forecasting and research of ionosphere's space weather.展开更多
Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures....Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures.However,the role of SACs supports on the catalytic performance does not receive enough research attentions.Here,we report an efficient route for synthesis of single atom Zn loading on the N-doped carbon nano-onions(ZnN/CNO).ZnN/CNO catalysts show an excellent high selectivity for CO_(2) electro-reduction to CO with a Faradaic efficiency of CO(FECO)up to 97%at -0.47 V(vs.reversible hydrogen electrode,RHE)and remarkable durability without activity decay.To our knowledge,ZnN/CNO is the best activity for the Zn based catalysts up to now,and superior to single atom Zn loading on the two-dimensional planar and porous structure of graphene substrate,although the graphene with larger surface area.The exact role of such carbon nano-onions(CNO)support is studied systematically by coupling characterizations and electrochemistry with density functional theory(DFT)calculations,which have attributed such good performance to the increased curvature.Such increased curvature modifies the surface charge,which then changes the adsorption energies of key intermediates,and improves the selectivity for CO generation accordingly.展开更多
A non-continuous electroosmotic flow model(PFP model)is built based on Poisson equation,Fokker-Planck equation and Navier-Stokse equation,and used to predict the DNA molecule translocation through nanopore.PFP model d...A non-continuous electroosmotic flow model(PFP model)is built based on Poisson equation,Fokker-Planck equation and Navier-Stokse equation,and used to predict the DNA molecule translocation through nanopore.PFP model discards the continuum assumption of ion translocation and considers ions as discrete particles.In addition,this model includes the contributions of Coulomb electrostatic potential between ions,Brownian motion of ions and viscous friction to ion transportation.No ionic diffusion coefficient and other phenomenological parameters are needed in the PFP model.It is worth noting that the PFP model can describe non-equilibrium electroosmotic transportation of ions in a channel of a size comparable with the mean free path of ion.A modified clustering method is proposed for the numerical solution of PFP model,and ion current translocation through nanopore with a radius of 1 nm is simulated using the modified clustering method.The external electric field,wall charge density of nanopore,surface charge density of DNA,as well as ion average number density,influence the electroosmotic velocity profile of electrolyte solution,the velocity of DNA translocation through nanopore and ion current blockade.Results show that the ion average number density of electrolyte and surface charge density of nanopore have a significant effect on the translocation velocity of DNA and the ion current blockade.The translocation velocity of DNA is proportional to the surface charge density of nanopore,and is inversely proportional to ion average number density of electrolyte solution.Thus,the translocation velocity of DNAs can be controlled to improve the accuracy of sequencing by adjusting the external electric field,ion average number density of electrolyte and surface charge density of nanopore.Ion current decreases when the ion average number density is larger than the critical value and increases when the ion average number density is lower than the critical value.Our numerical simulation shows that the translocation velocity of DNA given by the PFP model agrees with the experimental,results better than that given by PNP model or PB model.展开更多
The basic properties of the nonlinear propagation of the nonplanar (cylindrical and spherical) positronacoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion (e-p-i) plasma containing immobi...The basic properties of the nonlinear propagation of the nonplanar (cylindrical and spherical) positronacoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion (e-p-i) plasma containing immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both analytically and numerically. The modified Burgers equation (roBE) is derived by using the reductive perturbation method. The basic features of PA SHWs are significantly modified by the cold positron kinematic viscosity (U), superthermal parameter of electrons (ke), superthermal parameter of hot positrons (kp), the ratio of the electron temperature to hot positron temperature (or), the ratio of the electron number density to cold positron number density (μe), and the ratio of the hot positron number density to cold positron number density (μph). This study could be useful to identify the basic properties of nonlinear electrostatic disturbances in dissipative space and laboratory plasmas.展开更多
The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere,and has been conducted by almost every deep space planetary probe.The principles,modul...The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere,and has been conducted by almost every deep space planetary probe.The principles,modules,inversion results and primary analysis of the SHAO Planetary Occultation observation Processing system(SPOPs) are presented in this paper.Utilizing open-loop and closed-loop Doppler residual data of the Mars Express radio occultation experiment provided by ESA PSA and NASA PDS,the temperature,pressure,molecular number density profiles of Martian atmosphere and electron density profiles of the ionosphere are successfully retrieved,and the results are validated by the released radio science level 04 products of the ESA MaRS group.This system can also process the atmosphere radio occultation observations of other planets and theirs natural satellites.The implementation of the planetary radio occultation technique is of significance to China's YH-1 Mars exploration project,as well as for future planetary exploration missions from China.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-10...We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 Lo), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter -0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (-0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from -1 when only normal spirals are considered, to -1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.展开更多
Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negat...Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.展开更多
Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synt...Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.展开更多
Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ a...Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.展开更多
基金Project(152102410035)supported by the Henan International Cooperation in Science and Technology,ChinaProject(144200510001)supported by the Henan Province Program for Science and Technology Innovation Talents,China+1 种基金Project(50771042)supported by the National Natural Science Foundation of ChinaProject(IRT1234)supported by the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘Cu films on Fe, Ni and Ag substrates, Ni films on Fe and Ag substrates, Ag film on Cu substrate, Cr film on Fe substrate, Ag film on Ag substrate, Ni film on Ni substrate and Cu film on Cu substrate were deposited by electroplating. The average internal stress in all films, except Cr, was in-situ measured by the cantilever beam test. The interfacial stress is very large in the films with different materials with substrates and is zero in the films with the same material with substrates. The interfacial stress character obtained from the cantilever beam bending direction is consistent with that obtained from the modified Thomas–Fermi–Dirac electron theory.
文摘Experiments on proton dissociation from the surfaces of goethite, amorphous Al oxide, kaolinite and latosolwere carried out, showing amphoteric behavior with reactions of proton dissociation-association on the surfaces andbuffering capacity in such a sequence as amorphous Al oxide > latosol > kaolinite > goethite. Dissociation con-stants of surface proton, pK_(sa) are significantly correlated with surface charge density, which has been proved with anelectrochemical model. Tbe intrinsic constants of proton dissociation, K_(sa)(int), gained by extrapolation to zero charconditions of plots of pK_(sa) against σ_o, could be used to estimate the acidity strength of variable charge surfaces. Thevalue of pK_(sa)(int) is 8.08 for goethite, 1 .2 for amorphous Al oxide, 6.62 for kaolinite and 5 .32 for latosol.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China+1 种基金Project(CL11096)supported by the Undergraduate Innovation Training Foundation of Central South University,ChinaProject(BL12053)supported by the Undergraduate Innovation Training Foundation of Hunan Province,China
文摘The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.
文摘The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.
基金supported by the Special Fund for Public Welfare Industry(Grant Nos.GYHY201006048 and GYHY201306063)the National Natural Science Foundation of China(Grant Nos.41505030,41405039,41405040and 41606206)the Scientific Research Project of the Chinese Academy of Sciences(Grant No.YZ201129)
文摘The first Global Navigation Satellite System Occultation Sounder(GNOS) which is compatible of both Bei Dou System(BDS)and Global Positioning System(GPS) was successfully launched into orbit onboard the Feng Yun 3 C satellite(FY-3 C) on September 23, 2013, and it has already gathered a large amount of ionosphere radio occultation(RO) data so far. However, the detailed analysis and validation of GPS ionosphere RO data have not been done up to now. Therefore, this paper discusses the configuration of the FY-3 C GNOS, the methods and results of GPS ionosphere occultation processment, the quality analysis of the GPS ionosphere RO products, and the precision consistency between the GNOS GPS ionosphere RO product and ionosonde data. The peak electron density(Nm F2) correlation coefficient is 0.97, the corresponding standard deviation is 16.08%. The peak value altitude(hm F2) correlation coefficient is 0.89, and the corresponding standard deviation is 23.79 km. The in-orbit operation of GNOS provides a basis data set for the monitoring, forecasting and research of ionosphere's space weather.
基金This work was supported by the National Key R&D Program of China(2020YFA0710404)the Beijing Natural Science Foundation(2182077)the National Natural Science Foundation of China(21477136,51972281,and 21703250).
文摘Single-atom catalysts(SACs)have emerged as one of the most competitive catalysts toward a variety of important electrochemical reactions,thanks to their maximum atom economy,unique electronic and geometric structures.However,the role of SACs supports on the catalytic performance does not receive enough research attentions.Here,we report an efficient route for synthesis of single atom Zn loading on the N-doped carbon nano-onions(ZnN/CNO).ZnN/CNO catalysts show an excellent high selectivity for CO_(2) electro-reduction to CO with a Faradaic efficiency of CO(FECO)up to 97%at -0.47 V(vs.reversible hydrogen electrode,RHE)and remarkable durability without activity decay.To our knowledge,ZnN/CNO is the best activity for the Zn based catalysts up to now,and superior to single atom Zn loading on the two-dimensional planar and porous structure of graphene substrate,although the graphene with larger surface area.The exact role of such carbon nano-onions(CNO)support is studied systematically by coupling characterizations and electrochemistry with density functional theory(DFT)calculations,which have attributed such good performance to the increased curvature.Such increased curvature modifies the surface charge,which then changes the adsorption energies of key intermediates,and improves the selectivity for CO generation accordingly.
基金supported by the National Natural Science Foundation(Grant Nos.51375090 and 11172065)
文摘A non-continuous electroosmotic flow model(PFP model)is built based on Poisson equation,Fokker-Planck equation and Navier-Stokse equation,and used to predict the DNA molecule translocation through nanopore.PFP model discards the continuum assumption of ion translocation and considers ions as discrete particles.In addition,this model includes the contributions of Coulomb electrostatic potential between ions,Brownian motion of ions and viscous friction to ion transportation.No ionic diffusion coefficient and other phenomenological parameters are needed in the PFP model.It is worth noting that the PFP model can describe non-equilibrium electroosmotic transportation of ions in a channel of a size comparable with the mean free path of ion.A modified clustering method is proposed for the numerical solution of PFP model,and ion current translocation through nanopore with a radius of 1 nm is simulated using the modified clustering method.The external electric field,wall charge density of nanopore,surface charge density of DNA,as well as ion average number density,influence the electroosmotic velocity profile of electrolyte solution,the velocity of DNA translocation through nanopore and ion current blockade.Results show that the ion average number density of electrolyte and surface charge density of nanopore have a significant effect on the translocation velocity of DNA and the ion current blockade.The translocation velocity of DNA is proportional to the surface charge density of nanopore,and is inversely proportional to ion average number density of electrolyte solution.Thus,the translocation velocity of DNAs can be controlled to improve the accuracy of sequencing by adjusting the external electric field,ion average number density of electrolyte and surface charge density of nanopore.Ion current decreases when the ion average number density is larger than the critical value and increases when the ion average number density is lower than the critical value.Our numerical simulation shows that the translocation velocity of DNA given by the PFP model agrees with the experimental,results better than that given by PNP model or PB model.
文摘The basic properties of the nonlinear propagation of the nonplanar (cylindrical and spherical) positronacoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion (e-p-i) plasma containing immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both analytically and numerically. The modified Burgers equation (roBE) is derived by using the reductive perturbation method. The basic features of PA SHWs are significantly modified by the cold positron kinematic viscosity (U), superthermal parameter of electrons (ke), superthermal parameter of hot positrons (kp), the ratio of the electron temperature to hot positron temperature (or), the ratio of the electron number density to cold positron number density (μe), and the ratio of the hot positron number density to cold positron number density (μph). This study could be useful to identify the basic properties of nonlinear electrostatic disturbances in dissipative space and laboratory plasmas.
基金supported by the Sino-Russian Cooperation "YH-1" Mars Exploration Project (Grant No. 2008AA12A209)the National High-tech Research and Development Program of China (Grant No. 2009AA122206, 2008AA12A210, 2009AA12Z319)the National Nataral Science Foundation of China (Grant No. 10973031)
文摘The planetary radio occultation technique is one of the earliest suggested and achieved methods to detect the planetary atmosphere,and has been conducted by almost every deep space planetary probe.The principles,modules,inversion results and primary analysis of the SHAO Planetary Occultation observation Processing system(SPOPs) are presented in this paper.Utilizing open-loop and closed-loop Doppler residual data of the Mars Express radio occultation experiment provided by ESA PSA and NASA PDS,the temperature,pressure,molecular number density profiles of Martian atmosphere and electron density profiles of the ionosphere are successfully retrieved,and the results are validated by the released radio science level 04 products of the ESA MaRS group.This system can also process the atmosphere radio occultation observations of other planets and theirs natural satellites.The implementation of the planetary radio occultation technique is of significance to China's YH-1 Mars exploration project,as well as for future planetary exploration missions from China.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.
基金supported by the National Natural Science Foundation of China (Grant Nos.10833006 and 10621303)the National Basic Research Program of China (Grant No.2007CB815406)
文摘We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 Lo), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter -0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (-0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from -1 when only normal spirals are considered, to -1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.
基金Supported by the National Natural Science Foundation of China under Grant Nos.40971146 and 40740420660the National Basic Research Program of China under Grant No.2010CB134511Scientific and Technological Innovation Foundation of Southwest University for Graduates under Grant No.kb2010013
文摘Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.
基金the National Natural Science Foundation of China(21875133)Xijiang R&D Team(Wang X),the Science and Technology Program of Guangzhou(2019050001)Science and Technology Commission of Shanghai Municipality(19ZR1479500)。
文摘Integration of fast electrochemical double-layer capacitance and large pseudocapacitance is a practical way to improve the overall capability of supercapacitor,yet remains challenging.Herein,an effective cyanogel synthetic strategy was demonstrated to prepare ultrathin Ni(OH)2 nanosheets coupling with conductive reduced graphene oxide(rGO)(rGO-Ni(OH)2)at ambient condition.Ultrathin Ni(OH)2 nanosheet with 3–4 layers of edge-sharing octahedral MO6 maximally exposes the active surface of Faradic reaction and promotes the ion diffusion,while the conductive rGO sheet boosts the electron transport during the reaction.Even at 30 A g−1,the optimal sample can deliver a specific capacitance of 1119.52 F g−1,and maintain 82.3%after 2000 cycles,demonstrating much higher electrochemical capability than bare Ni(OH)2 nanosheets.A maximum specific energy of 44.3 W h kg^−1(148.5 W kg^−1)is obtained,when assembled in a two-electrode system rGO-Ni(OH)2//rGO.This study provides an insight into efficient construction of two dimensional hybrid electrodes with high performance for the new-generation energy storage system.
基金supported by the National Basic Research Program of Chi-na(Grant Nos.2011CB707601,2011CB707605)the National Natural Science Foundation of China(Grant No.50925519)+3 种基金the Research Funding for the Doctor Program from China Educational Ministry(Grant No.20100092110051)the Innovative Project for Graduate Students of Jiangsu Province(Grant No.CXZZ13_0087)the Scientific Research Founda-tion of Graduate School of Southeast University(Grant No.YBJJ1322)The calculations were performed on Tianhe-1A at National Supercomputing Center in Tianjin,China
文摘Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.