利用WRFDA-FSO(Forecast Sensitivity to Observation)系统,统计分析2009年和2010年5—10月青藏高原东侧常规地面和高空观测对WRF模式预报误差的贡献。结果表明:地面观测资料各要素中,温度场对模式预报误差贡献最大,风场、气压和水汽场...利用WRFDA-FSO(Forecast Sensitivity to Observation)系统,统计分析2009年和2010年5—10月青藏高原东侧常规地面和高空观测对WRF模式预报误差的贡献。结果表明:地面观测资料各要素中,温度场对模式预报误差贡献最大,风场、气压和水汽场的贡献相对小;四川东部、广西大部和云南南部边缘地区的资料对改进预报产生正贡献较大。高空资料各要素中,温度场对模式预报误差贡献最大,其次是水汽场,风场贡献最小;高空站资料对改进预报产生正贡献较大的区域主要分布在云南大部、贵州西部边缘和广西西北部边缘地区。依据误差统计结果,剔除对改进预报产生负贡献较大的地面和高空站资料后,模式降水和温度预报效果有所改善。展开更多
利用常规地面气象观测资料及欧洲EC、美国GFS和T639数值预报产品分析了2014年1月30日至2月2日(春节期间)江苏淮北地区日最高气温预报明显高于实况的可能原因。结果表明:2014年江苏淮北地区春节期间对流层中低层强暖平流有利于大幅升温,...利用常规地面气象观测资料及欧洲EC、美国GFS和T639数值预报产品分析了2014年1月30日至2月2日(春节期间)江苏淮北地区日最高气温预报明显高于实况的可能原因。结果表明:2014年江苏淮北地区春节期间对流层中低层强暖平流有利于大幅升温,期间低云较多、雾较浓且空气污染较重,减弱了到达地面的太阳辐射,地面气温较低,吸收大气热量,对暖平流的升温有明显的抵消作用,不利于淮北地区的大幅升温,甚至造成局地降温,垂直方向的温度层结上易出现逆温。当逆温层维持时,层结较稳定,地面风力较小,不利于空气中污染物和水汽的扩散,雾霾加重,形成一个降温正反馈机制。低云和雾霾及逆温层对地面气温的变化有重要影响。造成此次最高气温预报失误的主要原因为,模式预报的形势场与实况存在较大差异,未充分考虑近地层的相对湿度条件,预报的云量少于实况;对白天雾霾的降温效应估算过低;强暖平流增强850 h Pa气温时,当地面气温较低时,地面吸收大气热量,升温不明显,850 h Pa温度与地面气温变化的对应关系减弱,过高估算了强暖平流的升温作用;对EC和GFS等模式2 m气温数值预报产品过度依赖,未对形势和要素的数值模式预报结果进行检验。展开更多
文摘利用WRFDA-FSO(Forecast Sensitivity to Observation)系统,统计分析2009年和2010年5—10月青藏高原东侧常规地面和高空观测对WRF模式预报误差的贡献。结果表明:地面观测资料各要素中,温度场对模式预报误差贡献最大,风场、气压和水汽场的贡献相对小;四川东部、广西大部和云南南部边缘地区的资料对改进预报产生正贡献较大。高空资料各要素中,温度场对模式预报误差贡献最大,其次是水汽场,风场贡献最小;高空站资料对改进预报产生正贡献较大的区域主要分布在云南大部、贵州西部边缘和广西西北部边缘地区。依据误差统计结果,剔除对改进预报产生负贡献较大的地面和高空站资料后,模式降水和温度预报效果有所改善。
文摘利用常规地面气象观测资料及欧洲EC、美国GFS和T639数值预报产品分析了2014年1月30日至2月2日(春节期间)江苏淮北地区日最高气温预报明显高于实况的可能原因。结果表明:2014年江苏淮北地区春节期间对流层中低层强暖平流有利于大幅升温,期间低云较多、雾较浓且空气污染较重,减弱了到达地面的太阳辐射,地面气温较低,吸收大气热量,对暖平流的升温有明显的抵消作用,不利于淮北地区的大幅升温,甚至造成局地降温,垂直方向的温度层结上易出现逆温。当逆温层维持时,层结较稳定,地面风力较小,不利于空气中污染物和水汽的扩散,雾霾加重,形成一个降温正反馈机制。低云和雾霾及逆温层对地面气温的变化有重要影响。造成此次最高气温预报失误的主要原因为,模式预报的形势场与实况存在较大差异,未充分考虑近地层的相对湿度条件,预报的云量少于实况;对白天雾霾的降温效应估算过低;强暖平流增强850 h Pa气温时,当地面气温较低时,地面吸收大气热量,升温不明显,850 h Pa温度与地面气温变化的对应关系减弱,过高估算了强暖平流的升温作用;对EC和GFS等模式2 m气温数值预报产品过度依赖,未对形势和要素的数值模式预报结果进行检验。