期刊文献+
共找到951篇文章
< 1 2 48 >
每页显示 20 50 100
基于预训练模型与BiLSTM-CNN的多标签代码坏味检测方法
1
作者 刘海洋 张杨 +1 位作者 田泉泉 王晓红 《河北工业科技》 CAS 2024年第5期330-335,共6页
为了提高多标签代码坏味检测的准确率,提出一种基于预训练模型与BiLSTM-CNN的多标签代码坏味检测方法DMSmell(deep multi-smell)。首先,利用静态分析工具获取源代码中的文本信息和结构度量信息,并采用2种检测规则对代码坏味实例进行标记... 为了提高多标签代码坏味检测的准确率,提出一种基于预训练模型与BiLSTM-CNN的多标签代码坏味检测方法DMSmell(deep multi-smell)。首先,利用静态分析工具获取源代码中的文本信息和结构度量信息,并采用2种检测规则对代码坏味实例进行标记;其次,利用CodeBERT预训练模型生成文本信息对应的词向量,并分别采用BiLSTM和CNN对词向量和结构度量信息进行深度特征提取;最后,结合注意力机制和多层感知机,完成多标签代码坏味的检测,并对DMSmell方法进行了性能评估。结果表明:DMSmell方法在一定程度上提高了多标签代码坏味检测的准确率,与基于分类器链的方法相比,精确匹配率提高了1.36个百分点,微查全率提高了2.45个百分点,微F1提高了1.1个百分点。这表明,将文本信息与结构度量信息相结合,并利用深度学习技术进行特征提取和分类,可以有效提高代码坏味检测的准确性,为多标签代码坏味检测的研究和应用提供重要的参考。 展开更多
关键词 软件工程 代码坏味 预训练模型 多标签分类 深度学习
下载PDF
基于BERT古文预训练模型的实体关系联合抽取
2
作者 李智杰 杨盛杰 +3 位作者 李昌华 张颉 董玮 介军 《计算机系统应用》 2024年第8期187-195,共9页
古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模... 古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模型(entity relation joint extraction model based on BERT-ancient-Chinese pretrained model,JEBAC).首先,通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型(BERT-ancientChinese pre-trained model integrated BiLSTM neural network and attention mechanism,BACBA),识别出句中所有的subject实体和object实体,为关系和object实体联合抽取提供依据.接下来,将subject实体的归一化编码向量与整个句子的嵌入向量相加,以更好地理解句中subject实体的语义特征;最后,结合带有subject实体特征的句子向量和object实体的提示信息,通过BACBA实现句中关系和object实体的联合抽取,从而得到句中所有的三元组信息(subject实体,关系,object实体).在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取CCLUE小样本数据集上,与现有的方法进行了性能比较.实验结果表明,该方法在抽取性能上更加有效,F1值分别可达79.2%和55.5%. 展开更多
关键词 古汉语文本 实体关系抽取 BERT古文预训练模型 BiLSTM 注意力 三元组信息
下载PDF
基于视觉-语言预训练模型的零样本迁移学习方法综述
3
作者 孙仁科 许靖昊 +2 位作者 皇甫志宇 李仲年 许新征 《计算机工程》 CAS CSCD 北大核心 2024年第10期1-15,共15页
近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能,多模态学习的重要性和必要性逐渐展现出来,其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模... 近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能,多模态学习的重要性和必要性逐渐展现出来,其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模型强大的泛化性能,使用视觉-语言预训练模型不仅能提高零样本识别任务的准确率,而且能够解决部分传统方法无法解决的零样本下游任务问题。对基于视觉-语言预训练模型的ZST方法进行概述,首先介绍了零样本学习(FSL)的传统方法,并对其主要形式加以总结;然后阐述了基于视觉-语言预训练模型的ZST和FSL的区别及其可以解决的新任务;其次介绍了基于视觉-语言预训练模型的ZST方法在样本识别、目标检测、语义分割、跨模态生成等下游任务中的应用情况;最后对现有的基于视觉-语言预训练模型的ZST方法存在的问题进行分析并对未来的研究方向进行展望。 展开更多
关键词 零样本学习 视觉-语言预训练模型 零样本迁移 多模态 计算机视觉
下载PDF
生成式预训练模型机器人及其潜力与挑战
4
作者 张帆 谭跃刚 《中国机械工程》 EI CAS CSCD 北大核心 2024年第7期1241-1252,共12页
机器人与ChatGPT的融合可形成具有人类智慧特征的“硅智能体”,定义为“生成式预训练模型机器人”。以ChatGPT和机器人的智能融合为对象,阐述了GPT-R的特点、技术趋势及在工业和人类生活中的应用。分析了GPT-R在体力、智力及与人类共融... 机器人与ChatGPT的融合可形成具有人类智慧特征的“硅智能体”,定义为“生成式预训练模型机器人”。以ChatGPT和机器人的智能融合为对象,阐述了GPT-R的特点、技术趋势及在工业和人类生活中的应用。分析了GPT-R在体力、智力及与人类共融发展中存在的问题,从GPT-R的本体与智能、法律与安全、社会规则三方面给出相应对策。结合了ChatGPT和机器人技术的GPT-R将拥有越来越广泛的应用场景和越来越大的市场潜力,成为未来人工智能和机器人共融发展的重要方向之一。 展开更多
关键词 生成式预训练模型机器人 人工智能 硅智能体 共融发展
下载PDF
语义增强图像-文本预训练模型的零样本三维模型分类
5
作者 丁博 张立宝 +1 位作者 秦健 何勇军 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3314-3323,共10页
目前,基于对比学习的图像-文本预训练模型(CLIP)在零样本3维模型分类任务上表现出了巨大潜力,然而3维模型和文本之间存在巨大的模态鸿沟,影响了分类准确率的进一步提高。针对以上问题,该文提出一种语义增强CLIP的零样本3维模型分类方法... 目前,基于对比学习的图像-文本预训练模型(CLIP)在零样本3维模型分类任务上表现出了巨大潜力,然而3维模型和文本之间存在巨大的模态鸿沟,影响了分类准确率的进一步提高。针对以上问题,该文提出一种语义增强CLIP的零样本3维模型分类方法。该方法首先将3维模型表示成多视图;然后为了增强零样本学习对未知类别的识别能力,通过视觉语言生成模型获得每张视图及其类别的语义描述性文本,并将其作为视图和类别提示文本之间的语义桥梁,语义描述性文本采用图像字幕和视觉问答两种方式获取;最后微调语义编码器将语义描述性文本具化为类别的语义描述,其拥有丰富的语义信息和较好的可解释性,有效减小了视图和类别提示文本的语义鸿沟。实验表明,该文方法在ModelNet10和ModelNet40数据集上的分类性能优于现有的零样本分类方法。 展开更多
关键词 3维模型分类 零样本 基于对比学习的图像-文本预训练模型 语义描述性文本
下载PDF
基于多模态预训练模型的水稻病虫害图像描述生成研究 被引量:1
6
作者 薛悦平 胡彦蓉 +2 位作者 刘洪久 童莉珍 葛万钊 《南京农业大学学报》 CAS CSCD 北大核心 2024年第4期782-791,共10页
[目的]针对水稻病虫害图像分类技术缺少对病症描述的问题,本文提出一种轻量化的水稻病虫害图像描述模型,对水稻病虫害图像进行更为具体的描述。[方法]以白叶枯病、细菌性条斑病、恶苗病、三化螟虫、稻瘟病、稻曲病、纹枯病、飞虱、稻蓟... [目的]针对水稻病虫害图像分类技术缺少对病症描述的问题,本文提出一种轻量化的水稻病虫害图像描述模型,对水稻病虫害图像进行更为具体的描述。[方法]以白叶枯病、细菌性条斑病、恶苗病、三化螟虫、稻瘟病、稻曲病、纹枯病、飞虱、稻蓟马、胡麻斑病这十类常见的水稻病虫害开展研究,构建了水稻病虫害图像中文描述数据集。首先采用多模态预训练模型CLIP生成图像向量,其中包含基本的图像信息以及丰富的语义信息,采用映射网络将图像向量映射到文本空间里生成文本提示向量,语言模型GPT-2根据文本提示向量生成图像描述。[结果]在水稻病虫害图像描述数据集上,本文模型的指标总体明显优于其他模型,本文算法的BLEU-1、BLEU-2、BLEU-3、BLEU-4、ROUGE、METEOR指标较传统的CNN_LSTM模型分别提升0.26、0.27、0.24、0.22、0.22、0.14。生成的图像描述具有准确、详细、语义丰富等优点。另外使用实际稻田图片对模型进行测试,实际田间的场景更为复杂多样,生成的图像描述指标与数据集指标对比总体仅有轻微下降,仍高于其他对比模型。本文模型对水稻病虫害的总体识别准确率达97.28%。[结论]基于多模态预训练模型的水稻病虫害图像描述方法能够准确识别水稻病虫害病症并形成相应的病症描述,为水稻病虫害检测提供一种新思路。 展开更多
关键词 多模态预训练模型 水稻病虫害 图像描述生成 诊断
下载PDF
基于预训练模型的漏洞信息检索系统研究 被引量:1
7
作者 刘烨 杨良斌 《情报杂志》 CSSCI 北大核心 2024年第8期84-91,共8页
[研究目的]威胁情报中漏洞信息是指有关网络、系统、应用程序或供应链中存在的漏洞的信息。目前搜索引擎在漏洞信息检索上存在短板,利用预训练模型来构建漏洞检索系统可以提高检索效率。[研究方法]以公开的漏洞信息作为数据来源,构建了... [研究目的]威胁情报中漏洞信息是指有关网络、系统、应用程序或供应链中存在的漏洞的信息。目前搜索引擎在漏洞信息检索上存在短板,利用预训练模型来构建漏洞检索系统可以提高检索效率。[研究方法]以公开的漏洞信息作为数据来源,构建了一个问答数据集,对Tiny Bert进行增量预训练。使用模型对于每个查询向量化,并把漏洞信息构建成faiss向量数据库,利用HNSW索引进行多通道和单通道召回检索。然后对模型进行对比学习微调生成双塔和单塔模型,利用双塔召回和单塔精排构建了一个简易的知识检索系统。[研究结论]实验结果表明,预训练模型可以显著地提升检索性能,对比学习微调的双塔模型在构建的漏洞信息测试集中TOP1召回率为92.17%。通过漏洞信息领域的检索实践,对构建威胁情报的检索系统提供了参考。 展开更多
关键词 威胁情报 预训练模型 漏洞信息 多通道搜索技术 信息检索系统
下载PDF
基于RoFormer预训练模型的指针网络农业病害命名实体识别
8
作者 王彤 王春山 +3 位作者 李久熙 朱华吉 缪祎晟 吴华瑞 《智慧农业(中英文)》 CSCD 2024年第2期85-94,共10页
[目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。... [目的/意义]针对实体嵌套、实体类型混淆等问题导致的农业病害命名实体识别(Named Entities Recognition,NER)准确率不高的情况,以PointerNet为基准模型,提出一种基于RoFormer预训练模型的指针网络农业病害NER方法RoFormer-PointerNet。[方法]采用RoFormer预训练模型对输入的文本进行向量化,利用其独特的旋转位置嵌入方法来捕捉位置信息,丰富字词特征信息,从而解决一词多义导致的类型易混淆的问题。使用指针网络进行解码,利用指针网络的首尾指针标注方式抽取句子中的所有实体,首尾指针标注方式可以解决实体抽取中存在的嵌套问题。[结果和讨论]自建农业病害数据集,数据集中包含2867条标注语料,共10282个实体。为验证RoFormer预训练模型在实体抽取上的优越性,采用Word2Vec、BERT、RoBERTa等多种向量化模型进行对比试验,RoFormer-PointerNet与其他模型相比,模型精确率、召回率、F1值均为最优,分别为87.49%,85.76%和86.62%。为验证RoFormer-PointerNet在缓解实体嵌套的优势,与使用最为广泛的双向长短期记忆神经网络(Bidirectional Long Short-Term Memory,BiLSTM)和条件随机场(Conditional Random Field,CRF)模型进行对比试验,RoFormer-PointerNet比RoFormer-BiLSTM模型、RoFormer-CRF模型和RoFormer-BiLSTM-CRF模型分别高出4.8%、5.67%和3.87%,证明用指针网络模型可以很好解决实体嵌套问题。最后验证RoFormer-PointerNet方法在农业病害数据集中的识别性能,针对病害症状、病害名称、防治方法等8类实体进行了识别实验,本方法识别的精确率、召回率和F1值分别为87.49%、85.76%和86.62%,为同类最优。[结论]本研究提出的方法能有效识别中文农业病害文本中的实体,识别效果优于其他模型。在解决实体抽取过程中的实体嵌套和类型混淆等问题方面具有一定优势。 展开更多
关键词 农业病害 命名实体识别 实体嵌套 RoFormer预训练模型 指针网络
下载PDF
基于预训练模型自适应匹配的视觉故事生成算法
9
作者 宁铭 江爱文 +2 位作者 崔朝阳 刘长红 王明文 《中文信息学报》 CSCD 北大核心 2024年第5期155-166,共12页
视觉故事生成任务是为一组图像序列生成具有表现力和连贯性的、能准确描述所涉及视觉内容的语句段落,是当前计算机视觉和自然语言处理交叉领域中一个有趣而又快速发展的多模态研究方向。随着预训练模型在各种下游任务的成功,基于预训练... 视觉故事生成任务是为一组图像序列生成具有表现力和连贯性的、能准确描述所涉及视觉内容的语句段落,是当前计算机视觉和自然语言处理交叉领域中一个有趣而又快速发展的多模态研究方向。随着预训练模型在各种下游任务的成功,基于预训练模型的视觉故事生成算法也被广泛研究。但因为数据模态的差异和语义鸿沟的存在,预训练模型在微调学习过程中会产生灾难性遗忘问题。如何协调视觉和语言两种模态数据的预训练模型,是当前多模态预训练模型研究的主要目标之一。该文提出基于预训练模型自适应匹配的视觉故事生成算法,一方面综合挖掘图像流的视觉、关系、序列等多样化互补信息,弥补语义差异;同时,另一方面用适应性损失对图文两种模态数据进行特征对齐,以及对图像流数据进行连续信息对齐,取得了较好的效果。算法在目前已公开的视觉故事生成数据集(VIST)上与近年的先进算法进行实验比较。评测结果表明,该文算法在生成故事的图文相关性、文本多样性、内容逻辑连贯性等指标上取得了具有竞争力的结果。 展开更多
关键词 视觉故事 适应匹配损失 预训练模型 多模态特征 图像序列
下载PDF
基于预训练模型的单帧航拍图像无监督语义分割 被引量:1
10
作者 任月冬 游新冬 +1 位作者 滕尚志 吕学强 《北京信息科技大学学报(自然科学版)》 2024年第2期21-28,共8页
针对航拍图像语义分割成本高、通用性差和精度低等问题,提出了一种两阶段无监督语义分割网络(two-stage unsupervised semantic segmentation net, TUSSNet),针对单帧航拍图像训练进而生成最终的语义分割结果。算法分为2个阶段。首先,... 针对航拍图像语义分割成本高、通用性差和精度低等问题,提出了一种两阶段无监督语义分割网络(two-stage unsupervised semantic segmentation net, TUSSNet),针对单帧航拍图像训练进而生成最终的语义分割结果。算法分为2个阶段。首先,使用对比语言-图像预训练(contrastive language-image pretraining, CLIP)模型生成航拍图像的粗粒度语义标签,然后进行网络的预热训练。其次,在第一阶段的基础上,采用分割一切模型(segment anything model, SAM)对航拍图像进行细粒度类别预测,生成精细化类别掩码伪标签;然后迭代优化网络,得到最终语义分割结果。实验结果显示,相较于现有无监督语义分割方法,算法显著提高了航拍图像的分割精度,同时提供了准确的语义信息。 展开更多
关键词 预训练模型 航拍图像 语义分割 无监督算法 聚类效果估计 深度学习
下载PDF
基于强化学习引导预训练模型的情感音乐生成
11
作者 沈哲旭 谢心洛 +2 位作者 殷皓 杨亮 林鸿飞 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期336-343,共8页
生成具有特定情感的音乐是可控音乐生成的一个重要子任务。以往的监督学习方法需要依赖带有情感标注的音乐数据集,且存在训练目标与模型优化目标不一致的问题。本文提出了一种强化学习引导的情感音乐生成方法,使用训练好的符号音乐情感... 生成具有特定情感的音乐是可控音乐生成的一个重要子任务。以往的监督学习方法需要依赖带有情感标注的音乐数据集,且存在训练目标与模型优化目标不一致的问题。本文提出了一种强化学习引导的情感音乐生成方法,使用训练好的符号音乐情感分类模型对生成的音乐进行打分,以此作为强化学习的反馈来优化基于GPT-2的自回归音乐生成模型。该方法突破了数据集标注的限制,能够在曲风流派和数据类型相似的无标注符号音乐数据集上训练模型进行情感音乐生成。客观和主观评价结果表明,本文提出的方法可以生成与指定情感类别相匹配的高质量音乐。 展开更多
关键词 音乐生成 预训练模型 强化学习 音乐情感
下载PDF
基于预训练模型的中心分级燃烧室燃烧振荡 预报方法
12
作者 覃子宇 王欣尧 +1 位作者 韩啸 林宇震 《推进技术》 EI CAS CSCD 北大核心 2024年第4期182-189,共8页
为促进实现燃气轮机燃烧室中的燃烧振荡预报,提出一种结合预训练和迁移学习的研究思路。在预训练阶段,开展短火焰筒和长火焰筒下两类火焰图像的对比学习以完成编码器的自监督预训练。在迁移阶段,除了对特征编码构建线性分类器的直接迁移... 为促进实现燃气轮机燃烧室中的燃烧振荡预报,提出一种结合预训练和迁移学习的研究思路。在预训练阶段,开展短火焰筒和长火焰筒下两类火焰图像的对比学习以完成编码器的自监督预训练。在迁移阶段,除了对特征编码构建线性分类器的直接迁移,本文还提出将工况参数作为先验条件的贝叶斯迁移学习。结果表明,在两种迁移学习方式下预训练模型相比传统监督学习模型具有4.6%左右的性能提升。同时基于贝叶斯推断的迁移学习相比直接迁移鲁棒性更好。通过主成分分析和分层聚类,验证预训练模型能够提取火焰图像更为通用的热声特征。 展开更多
关键词 燃气轮机 燃烧室 燃烧振荡 预训练模型 迁移学习 主成分分析 分层聚类
下载PDF
基于预训练模型的医药说明书实体抽取方法研究
13
作者 陈仲永 黄雍圣 +1 位作者 张旻 姜明 《计算机科学与探索》 CSCD 北大核心 2024年第7期1911-1922,共12页
药品说明书医疗实体抽取可为用药信息智能检索及构建医疗知识图谱提供基础数据,具有重要研究意义与应用价值。针对治疗不同种类疾病的药品说明书中的医疗实体存在着较大的差异从而导致模型训练需要标注大量样本的问题,采用“大模型+小... 药品说明书医疗实体抽取可为用药信息智能检索及构建医疗知识图谱提供基础数据,具有重要研究意义与应用价值。针对治疗不同种类疾病的药品说明书中的医疗实体存在着较大的差异从而导致模型训练需要标注大量样本的问题,采用“大模型+小模型”的设计思路,提出了一种基于预训练模型的部分标签命名实体识别模型,先采用通过少量样本微调的预训练语言模型抽取药品说明书中的部分实体,再利用基于Transformer的部分标签模型进一步优化实体提取结果。部分标签模型采用平面格结构对输入文本、已识别出的部分实体及实体标签进行编码,使用Transformer提取特征表示,最后通过条件随机场(CRF)预测实体标签。为了减少训练模型的标注数据,利用标注样本实体掩盖策略,提出一种样本数据增广方法对部分标签模型进行训练。实验验证了“大模型+小模型”在医疗实体抽取的可行性,结果表明精确率(precision,P)、召回率(recall,R)和F1分数分别为85.0%、86.1%、85.6%,比其他学习方法更具优势。 展开更多
关键词 命名实体识别 预训练模型 医疗实体抽取 TRANSFORMER
下载PDF
融合知识图谱的预训练模型研究综述
14
作者 杨杰 刘纳 +3 位作者 徐贞顺 郑国风 李晨 道路 《太原理工大学学报》 北大核心 2024年第1期142-154,共13页
【目的】针对预训练模型仍面临处理复杂任务所需的知识信息质量不高和数量庞杂的挑战,而融合知识图谱的预训练模型可增强其性能。进一步研究并深入探讨如何有效地融合知识图谱到预训练模型中,以丰富目前综述所包含的知识增强类型。【方... 【目的】针对预训练模型仍面临处理复杂任务所需的知识信息质量不高和数量庞杂的挑战,而融合知识图谱的预训练模型可增强其性能。进一步研究并深入探讨如何有效地融合知识图谱到预训练模型中,以丰富目前综述所包含的知识增强类型。【方法】分析并总结了近年来融合知识图谱的预训练模型的相关文献,首先简要介绍了预训练模型引入知识图谱的原因、优势以及难点;其次详细讨论了隐性结合、显性结合两类方法,并对代表模型的特点与优缺点进行了对比总结;最后对融合知识图谱的预训练模型将面临的挑战以及未来研究发展趋势进行了讨论。【结论】融合知识图谱的预训练模型核心问题是解决如何将知识库中的信息有效地融合到预训练模型中,未来可以探索更加有效和高效的知识融合方法,以提高模型的性能和泛化能力。 展开更多
关键词 深度学习 预训练模型 知识图谱 增强
下载PDF
基于API序列和预训练模型的恶意软件检测
15
作者 窦建民 师智斌 +2 位作者 于孟洋 霍帅 张舒娟 《计算机工程与设计》 北大核心 2024年第4期974-981,共8页
针对现有方法存在特征表达受限、无法捕获API序列全局语义信息,且恶意软件数据集通常包含大量无标注数据,无法直接进行有监督学习等问题,利用自然语言预训练模型技术,提出一种基于API调用序列和预训练模型的恶意软件检测方法。使用原始... 针对现有方法存在特征表达受限、无法捕获API序列全局语义信息,且恶意软件数据集通常包含大量无标注数据,无法直接进行有监督学习等问题,利用自然语言预训练模型技术,提出一种基于API调用序列和预训练模型的恶意软件检测方法。使用原始API序列构建分词器;基于BERT模型构建出动态掩码序列模型进行无监督学习的预训练,同时获取API序列的全局动态编码表示;使用该编码构造检测模型。实验结果表明,所提方法能有效检测出恶意软件。 展开更多
关键词 恶意软件检测 预训练模型 无监督学习 动态掩码 软件调用序列 模型微调 编码表示
下载PDF
基于预训练模型与标签融合的文本分类 被引量:1
16
作者 余杭 周艳玲 +1 位作者 翟梦鑫 刘涵 《计算机应用》 CSCD 北大核心 2024年第3期709-714,共6页
对海量的用户文本评论数据进行准确分类具有重要的经济效益和社会效益。目前大部分文本分类方法是将文本编码直接使用于各式的分类器之前,而忽略了标签文本中蕴含的提示信息。针对以上问题,提出一种基于RoBERTa(Robustly optimized BERT... 对海量的用户文本评论数据进行准确分类具有重要的经济效益和社会效益。目前大部分文本分类方法是将文本编码直接使用于各式的分类器之前,而忽略了标签文本中蕴含的提示信息。针对以上问题,提出一种基于RoBERTa(Robustly optimized BERT pretraining approach)的文本和标签信息融合分类模型(TLIFC-RoBERTa)。首先,利用RoBERTa预训练模型获得词向量;然后,利用孪生网络结构分别训练文本和标签向量,通过交互注意力将标签信息映射到文本上,达到将标签信息融入模型的效果;最后,设置自适应融合层将文本表示与标签表示紧密融合进行分类。在今日头条和THUCNews数据集上的实验结果表明,相较于将Labelatt(Label-based attention improved model)中使用的静态词向量改为RoBERTa-wwm训练后的词向量算法(RA-Labelatt)、RoBERTa结合基于标签嵌入的多尺度卷积初始化文本分类算法(LEMC-RoBERTa)等主流深度学习模型,TLIFC-RoBERTa的精度最高,对于用户评论数据集有最优的分类效果。 展开更多
关键词 文本分类 预训练模型 交互注意力 标签嵌入 RoBERTa
下载PDF
基于预训练模型的多音字消歧方法
17
作者 高贝贝 张仰森 《计算机科学》 CSCD 北大核心 2024年第11期273-279,共7页
字音转换是中文语音合成系统(Text-To-Speech,TTS)的重要组成部分,其核心问题是多音字消歧,即在若干候选读音中为多音字选择一个正确的发音。现有的方法通常无法充分理解多音字所在词语的语义,且多音字数据集存在分布不均衡的问题。针... 字音转换是中文语音合成系统(Text-To-Speech,TTS)的重要组成部分,其核心问题是多音字消歧,即在若干候选读音中为多音字选择一个正确的发音。现有的方法通常无法充分理解多音字所在词语的语义,且多音字数据集存在分布不均衡的问题。针对以上问题,提出了一种基于预训练模型RoBERTa的多音字消歧方法CLTRoBERTa(Cross-lingual Translation RoBERTa)。首先联合跨语言互译模块获得多音字所在词语的另一种语言翻译,并将其作为额外特征输入模型以提升对词语的语义理解,然后使用判别微调中的层级学习率优化策略来适应神经网络不同层之间的学习特性,最后结合样本权重模块以解决多音字数据集的分布不均衡问题。CTLRoBERTa平衡了数据集的不均衡分布带来的性能差异,并且在CPP(Chinese Polyphone with Pinyin)基准数据集上取得了99.08%的正确率,性能优于其他基线模型。 展开更多
关键词 多音字消歧 预训练模型 字音转换 跨语言互译 层级学习率 样本权重
下载PDF
基于动态切片与预训练模型的代码漏洞检测
18
作者 嵇友晴 卢跃 +2 位作者 潘世文 张迎周 谢金言 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1529-1536,共8页
当前大部分基于深度学习的漏洞检测模型,通常以整个文件或函数作为输入,检测粒度较粗,存在准确率低下、可扩展性差等挑战.为了应对这些挑战并提升漏洞检测技术的性能,同时针对静态切片方法在发现特定执行条件下的漏洞存在不足的问题,提... 当前大部分基于深度学习的漏洞检测模型,通常以整个文件或函数作为输入,检测粒度较粗,存在准确率低下、可扩展性差等挑战.为了应对这些挑战并提升漏洞检测技术的性能,同时针对静态切片方法在发现特定执行条件下的漏洞存在不足的问题,提出了一种基于动态切片与预训练模型的代码漏洞检测方法.通过动态切片获取包含路径特征的语句块,借助CodeBERT预训练模型的语义提取能力将具有语义特征和路径特征的动态切片结果表示成二维张量;将代码结构和语义特征编码成灰度图像中的像素值,借助Swin Transformer的特征提取能力,以此更准确地进行漏洞检测.实验数据表明本文的方法取得了较好的效果,可降低误报率和漏报率,同时提高漏洞检测的准确性和可靠性. 展开更多
关键词 代码缺陷检测 动态切片 预训练模型 Swin Transformer
下载PDF
基于藏文字符感知的文本预训练模型方法研究
19
作者 洛桑嘎登 尼玛扎西 《计算机工程与应用》 CSCD 北大核心 2024年第21期127-133,共7页
目前藏文预训练模型主要使用音节作为藏文单词表示。采用音节嵌入构建藏文单词表示,会存在藏文单词表示不完整且鲁棒性不高的问题。为了应对这一挑战,提出了一个名为藏文字符感知的预训练模型,该模型融合藏文字符、字丁和音节三个维度... 目前藏文预训练模型主要使用音节作为藏文单词表示。采用音节嵌入构建藏文单词表示,会存在藏文单词表示不完整且鲁棒性不高的问题。为了应对这一挑战,提出了一个名为藏文字符感知的预训练模型,该模型融合藏文字符、字丁和音节三个维度的特征,从藏文更细粒度的信息表征藏文单词特征。利用原始数据集和对抗性拼写错误测试集,评估了所提出的方法在藏文自动分词和命名实体识别任务上的性能。实验结果表明,该方法可以同时提高藏文预训练语言模型的性能和鲁棒性。 展开更多
关键词 藏文 预训练模型 字符感知
下载PDF
基于预训练模型和中英文威胁情报的TTP识别方法研究
20
作者 任昌禹 张玲 +1 位作者 姬航远 杨立群 《信息网络安全》 CSCD 北大核心 2024年第7期1076-1087,共12页
TTP情报主要存在于非结构化的威胁报告中,是一种具有重要价值的网络威胁情报。然而,目前开源的TTP分类标签数据集主要集中在英文领域,涵盖的语料来源与TTP种类较为有限,特别是缺乏中文领域的相关数据。针对该情况,文章构建了一个中英文... TTP情报主要存在于非结构化的威胁报告中,是一种具有重要价值的网络威胁情报。然而,目前开源的TTP分类标签数据集主要集中在英文领域,涵盖的语料来源与TTP种类较为有限,特别是缺乏中文领域的相关数据。针对该情况,文章构建了一个中英文TTP情报数据集BTICD,该数据集包含17700条样本数据与236种对应的TTP。BTICD首次利用了公开的中文威胁报告语料进行TTP标注,且标注了一部分无法映射到任何一种TTP的白样本数据。文章基于预训练模型构建,并在该双语数据集上微调得到双语TTP识别模型SecBiBERT。实验结果表明,SecBiBERT在50种常见TTP分类任务上的Micro F1分数达到86.49%,在全量236类TTP分类任务上Micro F1分数达到73.09%,识别性能表现良好。 展开更多
关键词 TTP 威胁情报 预训练模型
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部