针对风电机组滚动轴承工作环境恶劣、工况多变且振动信号成分复杂等特点,将33项时域和频域特征参数及其特性应用于风电机组滚动轴承状态监测和故障诊断中,利用奇异值分解重构法(Singular Value Decomposition,SVD)将滚动轴承振动故障信...针对风电机组滚动轴承工作环境恶劣、工况多变且振动信号成分复杂等特点,将33项时域和频域特征参数及其特性应用于风电机组滚动轴承状态监测和故障诊断中,利用奇异值分解重构法(Singular Value Decomposition,SVD)将滚动轴承振动故障信号中的噪声等干扰成分去除,降噪重构后的信号经过基于经验模式分解法(Empirical Mode Decomposition,EMD)的希尔伯特-黄变换,实现故障冲击信号的共振解调处理,将低频周期故障调制信号筛选出来,最终结合滚动轴承各部件故障特征频率、振动信号时频分析结果和时频特征参数诊断结果实现滚动轴承的状态监测和故障识别。并通过振动测试信号分析,验证了该方法对提取风电机组滚动轴承故障特征的有效性。展开更多
针对高血压靶器官损伤时域脉搏波预测模型效率较低和分类精度较差的问题,本文提出了一种基于频域脉搏波特征图预测模型,实现高效无创辅助诊断。本文采用高斯滤波替换三角滤波,将脉搏波时域特征转换为频域矩阵特征图,并采用一种改进的Si...针对高血压靶器官损伤时域脉搏波预测模型效率较低和分类精度较差的问题,本文提出了一种基于频域脉搏波特征图预测模型,实现高效无创辅助诊断。本文采用高斯滤波替换三角滤波,将脉搏波时域特征转换为频域矩阵特征图,并采用一种改进的SiMAM注意力机制模型EfficientNetS,提高脉搏波全局特征提取能力。608例临床高血压靶器官损伤脉搏波样本经5-Fold交叉验证后分类模型评估指标F_(1)score、Accuracy、Precision、Sensitivity、曲线下面积(Area under the curve,AUC)值分别为:97.31%、98.72%、97.71%、97.04%、99.13%。与典型模型相比,本文方法具有较高的分类精度和泛化性能。此外,本文采用随机森林算法研究时域和频域特征与脉搏波分类相关性,深入挖掘潜在的影响高血压靶器官损伤分类的关键因素,发现高血压靶器官损伤的发病机理,为临床诊断提供有效支持。展开更多
文摘针对风电机组滚动轴承工作环境恶劣、工况多变且振动信号成分复杂等特点,将33项时域和频域特征参数及其特性应用于风电机组滚动轴承状态监测和故障诊断中,利用奇异值分解重构法(Singular Value Decomposition,SVD)将滚动轴承振动故障信号中的噪声等干扰成分去除,降噪重构后的信号经过基于经验模式分解法(Empirical Mode Decomposition,EMD)的希尔伯特-黄变换,实现故障冲击信号的共振解调处理,将低频周期故障调制信号筛选出来,最终结合滚动轴承各部件故障特征频率、振动信号时频分析结果和时频特征参数诊断结果实现滚动轴承的状态监测和故障识别。并通过振动测试信号分析,验证了该方法对提取风电机组滚动轴承故障特征的有效性。
文摘针对高血压靶器官损伤时域脉搏波预测模型效率较低和分类精度较差的问题,本文提出了一种基于频域脉搏波特征图预测模型,实现高效无创辅助诊断。本文采用高斯滤波替换三角滤波,将脉搏波时域特征转换为频域矩阵特征图,并采用一种改进的SiMAM注意力机制模型EfficientNetS,提高脉搏波全局特征提取能力。608例临床高血压靶器官损伤脉搏波样本经5-Fold交叉验证后分类模型评估指标F_(1)score、Accuracy、Precision、Sensitivity、曲线下面积(Area under the curve,AUC)值分别为:97.31%、98.72%、97.71%、97.04%、99.13%。与典型模型相比,本文方法具有较高的分类精度和泛化性能。此外,本文采用随机森林算法研究时域和频域特征与脉搏波分类相关性,深入挖掘潜在的影响高血压靶器官损伤分类的关键因素,发现高血压靶器官损伤的发病机理,为临床诊断提供有效支持。