A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics ...A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics of the fast and slow flexural mode waves excited by a dipole source are computed accurately at various deviation angles for both hard and soft formations. The sensitivities of the flexural mode waves to all elastic constants in a transversely isotropic formation are calculated. Numerical results show that, for a soft formation, the fast flexural mode wave is dominated by c66 at high deviation angles and low frequencies, while the slow flexural mode wave is dominated by c44 at the same conditions. Waveforms in time domain are also presented to support the conclusions.展开更多
The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave nu...The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11134011)the National R&D Projects for Key Scientific Instruments(Grant No.ZDYZ2012-1-07)the"12th Five-Year Plan"Period for Informatization Project in Supercomputing Key Demonstration,Chinese Academy of Sciences(Grant No.XXH12503-02-02-2(07))
文摘A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics of the fast and slow flexural mode waves excited by a dipole source are computed accurately at various deviation angles for both hard and soft formations. The sensitivities of the flexural mode waves to all elastic constants in a transversely isotropic formation are calculated. Numerical results show that, for a soft formation, the fast flexural mode wave is dominated by c66 at high deviation angles and low frequencies, while the slow flexural mode wave is dominated by c44 at the same conditions. Waveforms in time domain are also presented to support the conclusions.
基金the National Natural Science Foundatio of China (No. 50679041)the Foundation of Jiangx Educational Committee (No. GJJ09367)
文摘The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium.