简要介绍了利用 BP 神经网络、小波神经网络、递归神经网络进行风暴潮增水值预测的原理。选取广东省珠江口以南的阳江站 2017 年风暴潮增水数据进行测试。结果表明,三种神经网络方法针对阳江地区风暴潮增水的预测均具有可靠性和实用性...简要介绍了利用 BP 神经网络、小波神经网络、递归神经网络进行风暴潮增水值预测的原理。选取广东省珠江口以南的阳江站 2017 年风暴潮增水数据进行测试。结果表明,三种神经网络方法针对阳江地区风暴潮增水的预测均具有可靠性和实用性。以当前增水值为输入量的单因子模型更能反映真实风暴潮增水趋势,而从增水极值预测的准确性来看,以台风风力、气压、风向等相关参数为输入量的多因子模型优于单因子模型。BP 神经网络更适用于多因子长时间预测,小波神经网络在单因子短时间预测上准确性更高,递归神经网络预测值与实测值相关性更强。在工程运用中,需根据地域时空特点、数据资料的丰富度与预测值评估指标选择合适的方法。展开更多