期刊文献+
共找到598篇文章
< 1 2 30 >
每页显示 20 50 100
基于VMD-ISSA-GRU组合模型的短期风电功率预测 被引量:2
1
作者 王辉 邹智超 +2 位作者 李欣 吴作辉 周珂锐 《热力发电》 CAS CSCD 北大核心 2024年第5期122-131,共10页
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效... 为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.2118MW、1.8900及1.5916MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题. 展开更多
关键词 风电功率预测 变分模态分解 改进麻雀搜索算法 门控循环神经网络 超参数
下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:1
2
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 长短期记忆网络 门控循环单元
下载PDF
基于TPA‑MBLSTM模型的超短期风电功率预测 被引量:2
3
作者 蔡昌春 范靖浩 +1 位作者 李源佳 何瑶瑶 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第1期47-56,共10页
风速变化的间歇性和波动性给风功率的精准预测带来极大挑战,充分挖掘风电功率与风速等关键因素的内在规律是提高风电功率预测精度的有效途径。提出一种结合时间模式注意力(time pattern attention,TPA)机制的多层堆叠双向长短期记忆网... 风速变化的间歇性和波动性给风功率的精准预测带来极大挑战,充分挖掘风电功率与风速等关键因素的内在规律是提高风电功率预测精度的有效途径。提出一种结合时间模式注意力(time pattern attention,TPA)机制的多层堆叠双向长短期记忆网络的超短期风电功率预测方法。首先,利用基于密度的含噪声空间聚类方法(den⁃sity based spatial clustering with noise,DBSCAN)和线性回归算法进行风功率数据集的异常值检测,利用k最邻近(k⁃nearest neighbor,KNN)插值法重构异常点数据;其次,综合考虑风电功率与各气象特征的内在关联性,在MBLSTM网络中引入TPA机制合理分配时间步长权重,捕捉风电功率时间序列潜在逻辑规律;最后,利用实验仿真数据进行分析验证本文方法的有效性,该方法能够充分挖掘风功率与风速影响因素的关系,从而提高其预测精度。 展开更多
关键词 风电功率预测 时间模式注意力机制 多层堆叠双向长短记忆网络 异常数据检测 基于密度的含噪声空间聚类方法 线性回归
下载PDF
基于VMD-IMPA-SVM的超短期风电功率预测 被引量:2
4
作者 刘金朋 邓嘉明 +2 位作者 高鹏宇 刘胡诗涵 孙思源 《智慧电力》 北大核心 2024年第7期24-31,79,共9页
针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪... 针对风力发电强波动性带来的预测精度不高问题,构建一种基于变模态分解(VMD)、灰狼优化算法(GWO)、海洋捕食者算法(MPA)和支持向量机(SVM)的组合预测模型。采用GWO对VMD的模态数和惩罚因子进行寻优,将原始功率序列分解为子序列进行降噪处理;运用对立学习和柯西变异等方法改进MPA的种群生成与变异方式,得到改进MPA(IMPA)并优化SVM中的核参数与惩罚参数,进而构建VMD-IMPA-SVM组合预测模型,对各子序列进行预测并叠加得到最终预测值。实际算例分析表明,所提组合预测模型具有较高的预测精度,同时具备强鲁棒性。 展开更多
关键词 风电功率预测 变模态分解 海洋捕食者算法 支持向量机 灰狼优化算法
下载PDF
基于ikPCA-FABAS-KELM的短期风电功率预测 被引量:1
5
作者 徐武 范鑫豪 +2 位作者 沈智方 刘洋 刘武 《南京信息工程大学学报》 CAS 北大核心 2024年第3期321-331,共11页
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型... 为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 展开更多
关键词 短期风电功率预测 萤火虫算法 天牛须算法 核主成分分析 核极限学习机
下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测
6
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 超短期风电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
7
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
8
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
基于KCR-Informer的长期风电功率预测研究
9
作者 李国栋 徐明扬 《电力信息与通信技术》 2024年第4期55-62,共8页
准确的长期风电功率预测对电网系统稳定运行至关重要,传统预测方法在处理长序列预测时效果并不理想,近期研究表明Informer模型在长序列预测领域取得良好效果。然而,该模型在捕捉数据的局部特征以及处理网络层数堆叠问题上还有待改进。... 准确的长期风电功率预测对电网系统稳定运行至关重要,传统预测方法在处理长序列预测时效果并不理想,近期研究表明Informer模型在长序列预测领域取得良好效果。然而,该模型在捕捉数据的局部特征以及处理网络层数堆叠问题上还有待改进。文章提出一种基于卡尔曼滤波器-卷积神经网络-残差网络-Informer(Kalman filter-convolutional neural network-residual network-informer,KCR-Informer)模型的长期风电功率预测方法,首先分析气象数据对风电功率的影响,使用卡尔曼滤波器对风电气象数据进行数据平滑处理,以减轻噪声对数据的影响,然后基于Informer模型建立风电功率预测模型,根据气象数据以及历史功率数据进行长期功率预测;在此基础上,引入卷积神经网络和残差连接模块,使模型能够更好的捕捉到局部特征,同时加快模型收敛,解决模型网络退化问题。算例的结果表明,与长短期记忆网络(long short-term memory,LSTM)算法、Transformer算法、Informer算法相比,文章方法在不同预测步长下的平均绝对误差(mean absolute error,MAE)降低5.7%~30%,均方误差(mean square error,MSE)降低8.3%~35%,长期风功率预测的精度得到提升,验证了模型的有效性。 展开更多
关键词 长期风电功率预测 卡尔曼滤波器 Informer模型 卷积神经网络 残差连接
下载PDF
改进BBO优化BP神经网络的短期风电功率预测模型
10
作者 罗丹 章若冰 +1 位作者 余娟 谭芝娴 《绿色科技》 2024年第12期263-269,共7页
为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权... 为了提高预测模型在处理风电功率时间序列数据中的复杂模式和非线性特征时的识别能力,提出了一种新的预测模型。通过改进完全自适应噪声集合经验模态分解算法进行信号处理,然后根据改进生物地理学优化算法对反向传播神经网络进行初始权重优化,进一步提升短期风电功率预测的准确度和稳定性。通过实际应用案例表明,与其他优化算法相比,提出的模型在MAE、RMSE和MAPE上的表现分别平均提高了43.21%、37.98%和36.84%,显示出更高的预测准确度,仿真结果验证了本方法在短期风电功率预测领域的效果及其明显的优势。 展开更多
关键词 短期风电功率预测 完全自适应噪声集合经验模态分解 反向传播神经网络 生物地理学优化算法
下载PDF
基于风速波动幅度动态划分区间的ISSA-BP风电功率预测
11
作者 唐杰 刘琳 +3 位作者 刘白杨 邵武 管烨 易资兴 《邵阳学院学报(自然科学版)》 2024年第1期1-9,共9页
为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法。首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅... 为了解决传统风电功率预测精度不高的问题,采用一种基于风速波动幅度动态划分区间的风电功率组合预测方法。首先,对清洗后的风速数据进行卡尔曼滤波得到去噪后的风速曲线图,计算该曲线中相邻元素的差值向量并归一化处理,完成风速波动幅度的可视化分析,依据波动幅度曲线的第一、二、三时间点将全年数据动态划分为4个区间;其次,利用Tent混沌映射算法初始化麻雀种群位置得到改进麻雀搜索算法(improvement sparrow search algorithm,ISSA),对误差反向传播算法(back propagation,BP)的连接权和阈值进行优化,建立ISSA-BP风电功率组合预测模型;最后,运用MATLAB仿真软件进行仿真验证。仿真结果表明,动态划分区间的ISSA-BP风电功率预测方法能显著提高预测精度,对提高电力系统经济运行水平,促进风电消纳具有一定的理论实际意义。 展开更多
关键词 改进麻雀搜索算法 反向传播算法 卡尔曼滤波 风电功率预测
下载PDF
融合深度误差反馈学习和注意力机制的短期风电功率预测 被引量:2
12
作者 胡宇晗 朱利鹏 +4 位作者 李佳勇 李杨 曾杨 郑李梦千 帅智康 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期100-108,共9页
为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法。首先,以风电场数值天气预报(numerical weather prediction,NWP)为原始输入,基于双层长短期记忆网络(long short-term memory,LSTM)模型对... 为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法。首先,以风电场数值天气预报(numerical weather prediction,NWP)为原始输入,基于双层长短期记忆网络(long short-term memory,LSTM)模型对风电功率进行初步预测。其次,利用极端梯度提升(eXtreme gradient boosting,XGBoost)算法构建误差估计模型,以便在给定未来一段时间内NWP数据的情况下对初步预测误差进行快速估计。然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测。进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征。最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性。 展开更多
关键词 风电功率预测 深度学习 反馈学习 长短时记忆单元 注意力机制
下载PDF
基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测 被引量:2
13
作者 史彭珍 魏霞 +3 位作者 张春梅 谢丽蓉 叶家豪 杨家梁 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期226-233,共8页
针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,... 针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost)。首先,利用变分模态分解将原始功率信号数据分解多个子序列。其次,利用蝴蝶优化算法优化最小二乘支持向量机组合预测模型对每个子序列进行预测。最后通过自适应校正算法将多个分量预测值重构得到最终的预测值,结合西北某一风电场提供的风电功率数据为例验证模型的有效性。结果验证了建立的组合预测模型能够较好地对短期风电功率进行预测,并具有较好的预测精度。 展开更多
关键词 风电功率预测 最小二乘支持向量机 变分模态分解 自适应校正 预测精度
下载PDF
基于小波变换与IAGA-BP神经网络的短期风电功率预测 被引量:1
14
作者 孙国良 伊力哈木·亚尔买买提 +3 位作者 张宽 吐松江·卡日 李振恩 邸强 《电测与仪表》 北大核心 2024年第5期126-134,145,共10页
为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风... 为提高风功率预测精度,减轻输出风能波动性对风电并网不利影响,提出了基于WT-IAGA-BP神经网络的短期风电功率预测方法。利用风速分区、3σ准则及拉格朗日插值法清洗风电场历史数据;其次,依据小波重构误差,选择db4小波分别提取风速、风向、历史风功率的不同频率特征信号,并引入改进自适应遗传算法(IAGA)对各序列BP神经网络的初始权值与阈值寻优,使用Sigmiod函数通过适应度值自适应改变交叉概率与变异概率;构建各序列的WT-IAGA-BP模型对短期风功率组合预测。通过仿真分析,并与ELM、IAGA-BP、WT-ELM及WT-LSSVM方法对比,验证该方法具有更高的预测精度和更好的预测性能。 展开更多
关键词 风电功率预测 数据清洗 小波变换 改进自适应遗传算法 神经网络
下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:2
15
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 超短期风电功率预测 时间卷积网络 窗口概率稀疏Transformer 窗口概率稀疏自注意力机制
下载PDF
基于双重注意力机制CNN-BiLSTM与LightGBM误差修正的超短期风电功率预测 被引量:1
16
作者 龙铖 余成波 +3 位作者 何铖 朱春霖 张未 陈佳 《电气工程学报》 CSCD 北大核心 2024年第2期138-145,共8页
为了响应国家“双碳”目标,针对风电功率预测误差影响电网安全稳定运行的问题,提出一种基于双重注意力机制改进的CNN-BiLSTM初步预测和LightGBM误差修正的组合预测模型。该模型首先利用卷积神经网络(Convolutional neural network,CNN)... 为了响应国家“双碳”目标,针对风电功率预测误差影响电网安全稳定运行的问题,提出一种基于双重注意力机制改进的CNN-BiLSTM初步预测和LightGBM误差修正的组合预测模型。该模型首先利用卷积神经网络(Convolutional neural network,CNN)与注意力机制结合构成特征注意力模块自适应提取风电功率重要特征,然后利用双向长短期记忆网络(Bi-directional long short-term memory,BiLSTM)与注意力机制结合构成时间注意力模块对风电功率进行初步预测,最后利用LightGBM构造误差修正模型,对初步预测结果进行修正。使用平均绝对误差(Mean absolute error,MAE)、均方根误差(Root mean square error,RMSE)和确定系数(R^(2))作为试验评价指标,结果表明,该组合模型预测效果明显优于BiLSTM、CNN-BiLSTM等模型。 展开更多
关键词 风电功率预测 注意力机制 卷积神经网络 长短期记忆网络 误差修正 LightGBM
下载PDF
二次分解组合LSTM的短期风电功率预测模型 被引量:1
17
作者 杨生鹏 文中 +3 位作者 丁剑 张开伟 张业伟 倪志 《国外电子测量技术》 2024年第1期87-93,共7页
随着风电在电力系统中的占比逐步提高,风电功率的精确预测对电力系统的安全稳定运行具有重要意义。然而,风电的随机性和间歇性极大地影响其功率的精确预测。为此,提出二次分解组合长短期记忆(LSTM)的短期风电功率预测模型。首先,采用经... 随着风电在电力系统中的占比逐步提高,风电功率的精确预测对电力系统的安全稳定运行具有重要意义。然而,风电的随机性和间歇性极大地影响其功率的精确预测。为此,提出二次分解组合长短期记忆(LSTM)的短期风电功率预测模型。首先,采用经验模态分解(EMD)技术将原始风电序列分解为若干固有模态分量;再采用样本熵(SE)技术将各分量重组为高、中、低频3个序列,针对高频模态混叠再次采用麻雀搜索算法-变分模态分解(SSA-VMD)二次分解技术;最后,采用SSA算法对LSTM的参数进行寻优并完成风电功率预测。以湖北省某风电场对所提模型进行验证,并与其他模型进行对比。结果表明,所提模型的平均绝对误差(MAE)为5.79 kW,均方根误差(RMSE)为5.64 kW,平均百分比误差(MAPE)为17.38%,具有更好的预测精度。 展开更多
关键词 风电功率预测 经验模态分解 变分模态分解 麻雀搜索算法 长短期记忆
下载PDF
自适应密度聚类组合数据清洗的LSTM风电功率预测
18
作者 潘鹏程 刘晖 王仁明 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期59-66,共8页
风电机运行产生的海量数据中包含大量不同运行情况下造成的异常值,这些数据会对风电功率预测等方面产生影响。为提高风电功率的预测精度,首先,通过建立自适应基于密度的聚类算法与K-均值聚类算法组合数据清洗算法删筛异常值;然后,建立... 风电机运行产生的海量数据中包含大量不同运行情况下造成的异常值,这些数据会对风电功率预测等方面产生影响。为提高风电功率的预测精度,首先,通过建立自适应基于密度的聚类算法与K-均值聚类算法组合数据清洗算法删筛异常值;然后,建立随机森林模型填补缺失值保证数据的完整性;最后,利用长短期记忆神经网络结合气象信息建立风电功率预测模型,并对某风电场实测数据进行风电功率短期预测。研究结果表明,所述方法清洗效率高,预测准确度均高于其他模型,具有良好的预测性能。 展开更多
关键词 组合数据清洗 风电功率预测 长短期记忆 短期预测
下载PDF
基于Stacking多模型融合的极端天气短期风电功率预测方法
19
作者 郑颖颖 李鑫 +1 位作者 陈延旭 赵永宁 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3871-3882,共12页
为了解决极端天气下样本稀缺和单一模型预测精度不高的问题,提出一种基于Stacking多模型融合的极端天气短期风电功率预测方法。首先,提取极端事件的原始数据,通过考虑格兰杰因果的最大相关-最小冗余(maximal relevance minimal redundan... 为了解决极端天气下样本稀缺和单一模型预测精度不高的问题,提出一种基于Stacking多模型融合的极端天气短期风电功率预测方法。首先,提取极端事件的原始数据,通过考虑格兰杰因果的最大相关-最小冗余(maximal relevance minimal redundancy, mRMR)特征选择策略降低数据特征冗余和复杂性;其次,针对极端天气数据稀缺的问题,采用捕捉数据时间动态特性的时间序列生成对抗网络(time-seriesgenerativeadversarialnetwork,TimeGAN)算法进行扩充;最后,考虑到各单一模型的差异性及优势性,构建以卷积神经网络、长短期记忆网络、极端梯度提升树、K最近邻算法、支持向量机为基学习器,以轻量梯度提升机为元学习器的Stacking集成模型对未来3d的风电功率进行预测。实验结果表明,所提方法能够有效提升极端天气下的短期风电功率预测精度,与其他预测模型相比,其归一化平均绝对误差和均方根误差分别改善了2.48%和3.47%。 展开更多
关键词 风电功率预测 数据扩充 m RMR特征选择 Stacking集成学习 TimeGAN 极端天气
下载PDF
基于变换域分析和XGBoost算法的超短期风电功率预测模型
20
作者 王永生 李海龙 +3 位作者 关世杰 温彩凤 许志伟 高静 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3860-3870,共11页
为应对传统超短期风电功率预测方法在数据潜在关系挖掘和模型收敛速度等方面存在的问题,提出了一种基于变换域分析和极端梯度提升回归树算法(extreme gradient boosting, XGBoost)的超短期风电功率预测方法。首先,通过时间滑动窗口和风... 为应对传统超短期风电功率预测方法在数据潜在关系挖掘和模型收敛速度等方面存在的问题,提出了一种基于变换域分析和极端梯度提升回归树算法(extreme gradient boosting, XGBoost)的超短期风电功率预测方法。首先,通过时间滑动窗口和风电功率指标进行数据构建和低级特征提取。然后,结合快速傅里叶变换(fastFourier transform, FFT)和哈尔小波变换构成的多层次变换域分析方法对风电数据进行分解,充分考虑频域信息在特征学习中的重要性。最后,建立包含FFT、哈尔小波变换和XGBoost算法组合的超短期风电功率预测模型。实验结果表明,采用的多层次变换域分析方法能够充分挖掘原始特征之间的潜在关系,深入捕捉数据的时序关联性,而且XGBoost算法可以有效提升模型的预测性能,与其他预测模型相比,所提方法在不同数据集上均展现出较高的预测精度和较强的特征提取能力。 展开更多
关键词 风电功率预测 傅里叶变换 小波变换 时间滑动窗口 电功率指标 梯度提升回归树
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部