When super typhoon Sepat came close to the Fujian coastline on the night of 18 August 2007 (coded as 0709 in Chinese convention), an associated tornado-like severe storm developed at 2307–2320 Beijing Standard Time i...When super typhoon Sepat came close to the Fujian coastline on the night of 18 August 2007 (coded as 0709 in Chinese convention), an associated tornado-like severe storm developed at 2307–2320 Beijing Standard Time in Longgang, Cangnan County, Wenzhou Prefecture, Zhejiang Province approximately 300 km away in the forward direction of the typhoon. The storm caused heavy losses in lives and property. Studying the background of the formation of the storm, this paper identifies some of its typical characteristics after analyzing its retrieval of Doppler radar data, vertical wind shear and so on. Synoptic conditions, such as unstable weather processes and TBB, are also studied.展开更多
With PSU/NCAR nonhydrostatic mesoscale model MM5, the rainfall process of tropical storm Fitow(0114) is simulated for 00:00 UTC 31 Aug. – 00:00 UTC 2 Sept. 2001. Mesoscale separation is performed on the results with ...With PSU/NCAR nonhydrostatic mesoscale model MM5, the rainfall process of tropical storm Fitow(0114) is simulated for 00:00 UTC 31 Aug. – 00:00 UTC 2 Sept. 2001. Mesoscale separation is performed on the results with the filtering scheme. Analyses show that the MM5 model well reproduced the position and intensity of heavy rain. Mesoscale characteristics of heavy rain were well represented in rainfall time scale, rainfall area, stream field and divergence at lower and upper levels. The interaction between inverted typhoon troughs and the mesoscale systems lead to heavy rain occurrence. The distribution of divergence fields at lower and upper levels can have a kind of indication for the rainfall. Heavy rains are closely associated with topography and land-sea distribution in South China. Weak instability is favorable to the generation of heavy rain.展开更多
In Indonesia, most transmission of leptospirosis occurs through the rat under conditions of high rainfall or flooding. Sampang is endemic leptospirosis, during March-May 2013, there were 55 patients with 8 of them die...In Indonesia, most transmission of leptospirosis occurs through the rat under conditions of high rainfall or flooding. Sampang is endemic leptospirosis, during March-May 2013, there were 55 patients with 8 of them died. The purpose of this study was to analyze risk factors for outbreaks leptospirosis by climatic factors. Study is cross-sectional design of variable causes or risks that occur due to the object of research are measured simultaneously. The results showed that the distribution of events is based on epidemiological characteristics of leptospirosis in districts Sampang both rainy and dry season. Analysis of climatic factors show support to the continuation of leptospirosis whose temperatures ranged from 29.35 ~C-30.62 ~C, humidity range between 63.4%-80.5%. Rainfall ranges from 183-190 ram. Incidence of leptospirosis in Sampang shows the distribution of leptospirosis cases from 18 subdistricts, 14 subdistriets are at risk of the occurrence of leptospirosis. Results obtained rat trapping species caught in the neighborhood residential home patients were mice (Rattus tanezumi and Rattus novergicus) and the identification of the leptospira in rat urine sewers rat positive standing of the potential risk of leptospirosis in the community. The conclusions are climatic conditions, rainfall remarkable effecting on the incidence of leptospirosis.展开更多
The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using m...The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using mesoscale surface observations, radar reflectivity, satellite nephograms, and the final(FNL) analyses of the Global Forecasting System(GFS) of the National Center for Environmental Prediction(NCEP). The rainfall processes during Soudelor's landfall and translation over East China could be separated into four stages based on rainfall characteristics such as distribution, intensity, and corresponding dynamics. The relatively less precipitation in the first stage resulted from interaction between the easterly wind to the north flank of this tropical cyclone(TC) and the coastal topography along the southeast of Zhejiang Province, China. With landfall of the TC in East China during the second stage, precipitation maxima occurred because of interaction between the TC's principal rainbands and the local topography from northeastern Fujian Province to southwestern Zhejiang Province. The distribution of precipitation presented significant asymmetric features in the third stage with maximal rainfall bands in the northeast quadrant of the TC when Soudelor's track turned from westward to northward as the TC decayed rapidly. Finally, during the northward to northeastward translation of the TC in the fourth stage, the interaction between a mid-latitude weather system and the northern part of the TC resulted in transfer of the maximum rainfall from the north of Zhejiang Province to the north of Jiangsu Province,which represented the end of rainfall in Zhejiang Province. Further quantitative calculations of the rainfall rate induced by the interaction between local topography and TC circulation(defined as "orographic effects") in the context of a one-dimensional simplified model showed that orographic effects were the primary factor determining the intensity of precipitation in this case,and accounted for over 50% of the total precipitation. The asymmetric distribution of the TC's rainbands was closely related to the asymmetric distribution of moisture resulted from changes of the TC's structure, and led to asymmetric distribution of local intense precipitation induced by Soudelor. Based on analysis of this TC, it could be concluded that local severe rainfall in the coastal regions of East China is closely related to changes of TC structure and intensity, as well as the outer rainbands. In addition, precipitation intensity and duration will increase correspondingly because of the complex interactions between the TC and local topography, and the particular TC track along large-scale steering flow. The results of this study may be useful for the understanding, prediction, and warning of disasters induced by local extreme rainfall caused by TCs, especially for facilitating forecasting and warning of flooding and mudslides associated with torrential rain caused by interactions between landfalling TCs and coastal topography.展开更多
基金Natural Science Foundation of China (40875025,40875030)
文摘When super typhoon Sepat came close to the Fujian coastline on the night of 18 August 2007 (coded as 0709 in Chinese convention), an associated tornado-like severe storm developed at 2307–2320 Beijing Standard Time in Longgang, Cangnan County, Wenzhou Prefecture, Zhejiang Province approximately 300 km away in the forward direction of the typhoon. The storm caused heavy losses in lives and property. Studying the background of the formation of the storm, this paper identifies some of its typical characteristics after analyzing its retrieval of Doppler radar data, vertical wind shear and so on. Synoptic conditions, such as unstable weather processes and TBB, are also studied.
基金The National Natural Science Foundation of China (No. 40375036) the Base Condition Flat Roof Item of the Ministry of Science and Technology (No.2003DIB4J145)
文摘With PSU/NCAR nonhydrostatic mesoscale model MM5, the rainfall process of tropical storm Fitow(0114) is simulated for 00:00 UTC 31 Aug. – 00:00 UTC 2 Sept. 2001. Mesoscale separation is performed on the results with the filtering scheme. Analyses show that the MM5 model well reproduced the position and intensity of heavy rain. Mesoscale characteristics of heavy rain were well represented in rainfall time scale, rainfall area, stream field and divergence at lower and upper levels. The interaction between inverted typhoon troughs and the mesoscale systems lead to heavy rain occurrence. The distribution of divergence fields at lower and upper levels can have a kind of indication for the rainfall. Heavy rains are closely associated with topography and land-sea distribution in South China. Weak instability is favorable to the generation of heavy rain.
文摘In Indonesia, most transmission of leptospirosis occurs through the rat under conditions of high rainfall or flooding. Sampang is endemic leptospirosis, during March-May 2013, there were 55 patients with 8 of them died. The purpose of this study was to analyze risk factors for outbreaks leptospirosis by climatic factors. Study is cross-sectional design of variable causes or risks that occur due to the object of research are measured simultaneously. The results showed that the distribution of events is based on epidemiological characteristics of leptospirosis in districts Sampang both rainy and dry season. Analysis of climatic factors show support to the continuation of leptospirosis whose temperatures ranged from 29.35 ~C-30.62 ~C, humidity range between 63.4%-80.5%. Rainfall ranges from 183-190 ram. Incidence of leptospirosis in Sampang shows the distribution of leptospirosis cases from 18 subdistricts, 14 subdistriets are at risk of the occurrence of leptospirosis. Results obtained rat trapping species caught in the neighborhood residential home patients were mice (Rattus tanezumi and Rattus novergicus) and the identification of the leptospira in rat urine sewers rat positive standing of the potential risk of leptospirosis in the community. The conclusions are climatic conditions, rainfall remarkable effecting on the incidence of leptospirosis.
基金supported by the Huadong Regional Meteorological Science and Technology Innovation Fund Collaborative Project (Grant No. QYHZ201404)the Development of Social Welfare Project of Zhejiang Province (Grant No. 2013C33037)+2 种基金the Science Foundation of Zhejiang Province (Grant No. LY18D050001)United States Office of Naval Research Project (Grant No. N000140910526)the Development of Social Welfare Key Project of Zhejiang Province (Grant No. 2017C03035)
文摘The characteristics and dynamics associated with the distribution, intensity, and triggering factors of local severe precipitation in Zhejiang Province induced by Super Typhoon Soudelor(2015) were investigated using mesoscale surface observations, radar reflectivity, satellite nephograms, and the final(FNL) analyses of the Global Forecasting System(GFS) of the National Center for Environmental Prediction(NCEP). The rainfall processes during Soudelor's landfall and translation over East China could be separated into four stages based on rainfall characteristics such as distribution, intensity, and corresponding dynamics. The relatively less precipitation in the first stage resulted from interaction between the easterly wind to the north flank of this tropical cyclone(TC) and the coastal topography along the southeast of Zhejiang Province, China. With landfall of the TC in East China during the second stage, precipitation maxima occurred because of interaction between the TC's principal rainbands and the local topography from northeastern Fujian Province to southwestern Zhejiang Province. The distribution of precipitation presented significant asymmetric features in the third stage with maximal rainfall bands in the northeast quadrant of the TC when Soudelor's track turned from westward to northward as the TC decayed rapidly. Finally, during the northward to northeastward translation of the TC in the fourth stage, the interaction between a mid-latitude weather system and the northern part of the TC resulted in transfer of the maximum rainfall from the north of Zhejiang Province to the north of Jiangsu Province,which represented the end of rainfall in Zhejiang Province. Further quantitative calculations of the rainfall rate induced by the interaction between local topography and TC circulation(defined as "orographic effects") in the context of a one-dimensional simplified model showed that orographic effects were the primary factor determining the intensity of precipitation in this case,and accounted for over 50% of the total precipitation. The asymmetric distribution of the TC's rainbands was closely related to the asymmetric distribution of moisture resulted from changes of the TC's structure, and led to asymmetric distribution of local intense precipitation induced by Soudelor. Based on analysis of this TC, it could be concluded that local severe rainfall in the coastal regions of East China is closely related to changes of TC structure and intensity, as well as the outer rainbands. In addition, precipitation intensity and duration will increase correspondingly because of the complex interactions between the TC and local topography, and the particular TC track along large-scale steering flow. The results of this study may be useful for the understanding, prediction, and warning of disasters induced by local extreme rainfall caused by TCs, especially for facilitating forecasting and warning of flooding and mudslides associated with torrential rain caused by interactions between landfalling TCs and coastal topography.