To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the ste...To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.展开更多
The design procedure of a dense gap-graded friction course(DGGFC) with coarse aggregate void filling method is presented. Testing results show that a DGGFC mixture possesses a dense stone-matrix structure, good stab...The design procedure of a dense gap-graded friction course(DGGFC) with coarse aggregate void filling method is presented. Testing results show that a DGGFC mixture possesses a dense stone-matrix structure, good stability and almost the same texture depth as stone matrix asphalt (SMA). It also has a coarse and even surface after paving and has no separation during construction. It is durable and impermeable. It balances and improves the inherent inconsistency of asphalt mixture between the large texture depth for skid resistance and the impermeability for durability. The actual application in the Nanning-Liuzhou Expressway also shows that the performance of the DGGFC is as excellent as that of SMA, while the DGGFC mixture is cheaper than SMA. The DGGFC mixture is good for wearing course of pavement. Further research on DGGFC can be helpful for improving the surface skid resistance, prolonging the life-span period and reducing the construction costs of asphalt pavement.展开更多
An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers;...An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.展开更多
Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str...Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.展开更多
Efficient electrode material is crucial for energy conversion from renewable sources such as solar electricity. We present a method for preparation of carbon nanotubes (CNTs) with zeolitic imidazolate frameworks (Z...Efficient electrode material is crucial for energy conversion from renewable sources such as solar electricity. We present a method for preparation of carbon nanotubes (CNTs) with zeolitic imidazolate frameworks (ZIFs, e.g., ZIF-8) via an in situ pyrolysis process. The resultant materials are completely new carbon composites with desirable hierarchical porosity and nitrogen-doped features. Electron microscopy images show that CNTs with small external diameters enable more uniform dispersion of ZlF-8-derived carbons, subsequently yielding a unique hierarchically porous structure. Such carbon shows superior activity in oxygen reduction reaction (ORR) and high performance of supercapacitance, making it a valu- able metal-flee electrode material and a competent alternative to the state-of-the-art Pt/C catalyst. The electrocatalytic performance of CNTs can be dramatically improved by the incorporation of ZIF-8-derived carbons, which is attributed to the combination of good conductivity, abundant accessible dopant species, as well as proper porosity. Our method offers a new avenue for constructing electrocatalysts by effective integration of ZlF-8-derived carbon and the CNTs skeleton.展开更多
Conjugated polymer photocatalysts have received extensive attention in the field of photocatalytic hydrogen evolution owing to their tunable molecular structures and electronic properties.Herein,we developed three don...Conjugated polymer photocatalysts have received extensive attention in the field of photocatalytic hydrogen evolution owing to their tunable molecular structures and electronic properties.Herein,we developed three donoracceptor(D-A)type thiophene-containing narrow-band-gap conjugated polymers with pyrene as a donor and different fused-thiophene derivatives as acceptors via direct C-H arylation coupling polymerization.It was found that the band gap of the polymers can be tuned by adjusting the number of the fused-thiophene rings.The visible light absorption range can be extended by increasing the number of the thiophene rings,the planar molecular structure for both donor and acceptor units facilitates the charge transmission along the polymer skeleton,and the D-A type polymer structure promotes the dissociation of photo-induced electrons and holes.As a result,a high photocatalytic hydrogen evolution rate of 33.07 mmol h^(−1)g^(−1) was obtained by PyTP-2 with an optimized molecular structure under visible light irradiation(λ>420 nm)without the aid of Pt co-catalyst.In addition,PyTP-2 also shows a photocatalytic activity for oxygen evolution with an average oxygen evolution rate of 58.37µmol h^(−1)g^(−1).展开更多
基金The National Natural Science Foundation of China(No.5117810151378112)the Doctoral Fund of Ministry of Education(No.20110092110011)
文摘To study the seismic performance of double-skin steelconcrete composite box( DSCB) piers, a total of 11 DSCB pier specimens were tested under bidirectional cyclic loading. The effects of the loading pattern, the steel plate thickness, the axial load ratio, the slenderness ratio and the aspect ratio were taken into consideration. The damage evolution process and failure modes of the tested specimens are presented in detail. Test results are also discussed in terms of the hysteretic curve, skeleton curve, ductility and energy dissipation capacity of DSCB pier specimens. It can be concluded that the hysteretic performance of DSCB piers in one direction is affected and weakened by the cyclic loading in the other direction. DSCB piers under bidirectional cyclic loading exhibit good performance in terms of load carrying capacity, ductility, and energy dissipation capacity. Overall, DSCB piers can meet the basic aseismic requirements. The research results can be taken as a reference for using DSCB piers as high piers in bridges in strong earthquakeprone areas.
文摘The design procedure of a dense gap-graded friction course(DGGFC) with coarse aggregate void filling method is presented. Testing results show that a DGGFC mixture possesses a dense stone-matrix structure, good stability and almost the same texture depth as stone matrix asphalt (SMA). It also has a coarse and even surface after paving and has no separation during construction. It is durable and impermeable. It balances and improves the inherent inconsistency of asphalt mixture between the large texture depth for skid resistance and the impermeability for durability. The actual application in the Nanning-Liuzhou Expressway also shows that the performance of the DGGFC is as excellent as that of SMA, while the DGGFC mixture is cheaper than SMA. The DGGFC mixture is good for wearing course of pavement. Further research on DGGFC can be helpful for improving the surface skid resistance, prolonging the life-span period and reducing the construction costs of asphalt pavement.
基金The National Natural Science Foundation of China(No.51678141,51378112)the Open Fund from the National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation,Southwest Jiaotong University(No.SWJTUGGS-2014001)
文摘An accurate finite element ( FE) model was constructed to examine the hysteretic behavior of double-skin steel-concrete composite box ( DSCB) piers for further understanding the seismic performance of DSCB piers; where the local buckling behavior of steel tubes, the confinement of the in-filled concrete and the interface action between steel tube and in-filled concrete were considered. The accuracy of the proposed FE model was verified by the bidirectional cyclic loading test results. Based on the validated FE model, the effects of some key parameters, such as section width to steel thickness ratio, slenderness ratio, aspect ratio and axial load ratio on the hysteretic behavior of DSCB piers were investigated. Finally, the skeleton curve model of DSCB piers was proposed. The numerical simulation results reveal that the peak strength and elastic stiffness decrease with the increase of the section width to steel thickness ratio. Moreover, the increase of the slenderness ratio may result in a significant reduction in the peak strength and elastic stiffness while the ultimate displacement increases. The proposed skeleton curve model can be taken as a reference for seismic performance analyses of the DSCB piers.
文摘Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.
基金supported by the Award Program for Fujian Minjiang Scholar Professorshipthe National Natural Science Foundation of China (21571035)
文摘Efficient electrode material is crucial for energy conversion from renewable sources such as solar electricity. We present a method for preparation of carbon nanotubes (CNTs) with zeolitic imidazolate frameworks (ZIFs, e.g., ZIF-8) via an in situ pyrolysis process. The resultant materials are completely new carbon composites with desirable hierarchical porosity and nitrogen-doped features. Electron microscopy images show that CNTs with small external diameters enable more uniform dispersion of ZlF-8-derived carbons, subsequently yielding a unique hierarchically porous structure. Such carbon shows superior activity in oxygen reduction reaction (ORR) and high performance of supercapacitance, making it a valu- able metal-flee electrode material and a competent alternative to the state-of-the-art Pt/C catalyst. The electrocatalytic performance of CNTs can be dramatically improved by the incorporation of ZIF-8-derived carbons, which is attributed to the combination of good conductivity, abundant accessible dopant species, as well as proper porosity. Our method offers a new avenue for constructing electrocatalysts by effective integration of ZlF-8-derived carbon and the CNTs skeleton.
基金financially supported by the National Natural Science Foundation of China(21574077 and 21304055)the Fundamental Research Funds for the Central Universities(GK202102005)。
文摘Conjugated polymer photocatalysts have received extensive attention in the field of photocatalytic hydrogen evolution owing to their tunable molecular structures and electronic properties.Herein,we developed three donoracceptor(D-A)type thiophene-containing narrow-band-gap conjugated polymers with pyrene as a donor and different fused-thiophene derivatives as acceptors via direct C-H arylation coupling polymerization.It was found that the band gap of the polymers can be tuned by adjusting the number of the fused-thiophene rings.The visible light absorption range can be extended by increasing the number of the thiophene rings,the planar molecular structure for both donor and acceptor units facilitates the charge transmission along the polymer skeleton,and the D-A type polymer structure promotes the dissociation of photo-induced electrons and holes.As a result,a high photocatalytic hydrogen evolution rate of 33.07 mmol h^(−1)g^(−1) was obtained by PyTP-2 with an optimized molecular structure under visible light irradiation(λ>420 nm)without the aid of Pt co-catalyst.In addition,PyTP-2 also shows a photocatalytic activity for oxygen evolution with an average oxygen evolution rate of 58.37µmol h^(−1)g^(−1).