采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料...采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。展开更多
采用分段高温氧化固相法合成了掺杂La3+、F-的锂离子电池正极材料LiLa x Mn2-x F x O4-x(x=0、0.01、0.02和0.05)。结果发现,在小于等于1C时,掺杂与否对其放电容量影响不大;在2~10C时,掺杂可明显改善倍率性能;在15C时,掺杂量也显示出重...采用分段高温氧化固相法合成了掺杂La3+、F-的锂离子电池正极材料LiLa x Mn2-x F x O4-x(x=0、0.01、0.02和0.05)。结果发现,在小于等于1C时,掺杂与否对其放电容量影响不大;在2~10C时,掺杂可明显改善倍率性能;在15C时,掺杂量也显示出重要影响,未掺杂的LiMn2O4的高倍率放电能力仅为4%,而掺杂x=0.02的达到56%。XRD物相、CV循环伏安和EIS电化学阻抗分析支撑了倍率性能的实验结果,当不出现第二相时,随掺杂量增加,电荷转移电阻、阳极和阴极反应极化逐渐减小,反应可逆性逐渐增大,但当x=0.05出现第二相时,电荷转移电阻、阳极和阴极反应极化又开始增大。展开更多
MnO_(2)作为超级电容器电极材料具有理论比电容高、成本低、环境友好等优点,但其低导电性和低利用率阻碍了其潜在应用.本研究首先在柔性碳布上电化学生长ZnO纳米棒阵列作为电极衬底,然后通过阳极电沉积法在ZnO纳米棒阵列表面外延生长了M...MnO_(2)作为超级电容器电极材料具有理论比电容高、成本低、环境友好等优点,但其低导电性和低利用率阻碍了其潜在应用.本研究首先在柔性碳布上电化学生长ZnO纳米棒阵列作为电极衬底,然后通过阳极电沉积法在ZnO纳米棒阵列表面外延生长了Mo和碳纳米管(CNTs)共掺杂的MnO_(2)薄膜,可控构筑了有效、高导电性的MnO_(2)纳米阵列电极(定义为ZnO@Mo-CNT-MnO_(2)NA).柔性ZnO@Mo-CNTMnO_(2)NA电极在100 A g^(-1)的大电流充放电密度下比电容可达237.5 F g^(-1),10,000次循环后电容保留率高达86%.采用ZnO@Mo-CNTMnO_(2)NA电极组装成水系非对称超级电容器,弯曲状态下在132.35 mW cm^(-3)(5mA cm^(-2))高功率密度下获得了1.13 mW h cm^(-3)的高能量密度,5mA cm^(-2)充放电倍率下循环7600次后电容保留率高达88%.本研究构筑的MnO_(2)基纳米阵列电极结构可提高其电导率和利用率,为柔性金属氧化物超级电容器电极的设计与制备提供新途径.展开更多
为了提高锂硫电池电化学性能,针对其面临的多硫化锂穿梭问题,本文以还原氧化石墨烯(rGO)为生长基质,结合四硫化钒(VS4)与多价态钼(Mo)带来的吸附性能及硫空位修复优势,采用水热法制备了复合材料VS4/Mo@rGO作为锂硫正极材料中的载体组分...为了提高锂硫电池电化学性能,针对其面临的多硫化锂穿梭问题,本文以还原氧化石墨烯(rGO)为生长基质,结合四硫化钒(VS4)与多价态钼(Mo)带来的吸附性能及硫空位修复优势,采用水热法制备了复合材料VS4/Mo@rGO作为锂硫正极材料中的载体组分,它不仅有更多的活性点位缓解穿梭效应,还能减少VS4本征硫空位的体积膨胀,为克制电解液中多硫化锂的溶解及极片失效粉化提供了较大帮助。通过熔融扩散法载硫后,该正极在负载量8 mg cm−2、0.3 C时首次放电915 mAh g−1,在10 mg cm−2负载电极的倍率测试中,其放电比容量中值仍有513 mAh g−1,整体倍率性能远高于rGO/S和CB@rGO/S。展开更多
在锂离子电池(LIBs)和钠离子电池(SIBs)中,设计同时适用的负极材料,使其具有高倍率性能和超长循环寿命是亟需解决的工作。本文采用静电纺丝技术和硫化工程技术成功制备了一种均匀分布在N,S-掺杂炭纳米纤维上的MoO_(2)/MoS_(2)异质结构(M...在锂离子电池(LIBs)和钠离子电池(SIBs)中,设计同时适用的负极材料,使其具有高倍率性能和超长循环寿命是亟需解决的工作。本文采用静电纺丝技术和硫化工程技术成功制备了一种均匀分布在N,S-掺杂炭纳米纤维上的MoO_(2)/MoS_(2)异质结构(MoO_(2)/MoS_(2)@NSC)。其中一维炭骨架作为导电框架可缩短Li^(+)/Na^(+)的扩散途径;炭纳米纤维中N/S杂原子的掺杂引入了丰富的活性位点,显著增强了离子扩散动力学。此外,在MoO_(2)相中通过原位形成的MoS_(2)纳米片强化了异质界面,MoO_(2)和MoS_(2)之间异质界面的构建使得Li^(+)/Na^(+)的快速传输成为实现高效储能的关键。因此,作为LIBs负极材料时,MoO_(2)/MoS_(2)@NSC电极在5.0 A g^(−1)的电流密度下循环2000圈后,仍具有640 mAh g^(−1)的优异放电比容量,每圈的容量衰减率仅为0.002%;在10.0 A g^(−1)的高电流密度下可达到614 mAh g^(−1)的放电比容量。对于SIBs,在2.0 A g^(−1)的电流密度下循环2000圈后其可逆容量仍能达到242 mAh g^(−1)。本工作采用一种新颖的界面调控策略来合理地设计负极材料,从而提高Li^(+)/Na^(+)储存动力学,实现超长寿命的循环性能。展开更多
通过在碱液中阴极还原铁酸铜(t-CuFe_2O_4)简便地实现了纳米Fe/Cu复合材料的自组装。采用循环伏安(CV)与X射线衍射(XRD)分析了自组装过程中的相变。通过透射电镜(TEM)、选区电子衍射(SAED)以及扫描透射-能谱分析(STEM-EDX)的表征可以发...通过在碱液中阴极还原铁酸铜(t-CuFe_2O_4)简便地实现了纳米Fe/Cu复合材料的自组装。采用循环伏安(CV)与X射线衍射(XRD)分析了自组装过程中的相变。通过透射电镜(TEM)、选区电子衍射(SAED)以及扫描透射-能谱分析(STEM-EDX)的表征可以发现电结晶得到的铁、铜纳米颗粒分布均匀且接触紧密。当用于铁镍电池负极时,Fe/Cu纳米复合电极展现了较好的放电容量与充电接收能力,并具备优异的高倍率与低温性能。当电流密度高达4 500 m A·g_(Fe)^(-1)或运行温度仅为-40℃时,该电极仍拥有很好的输出容量与电位特性。线性扫描伏安(LSV)分析证明了该电极中原位生成的Cu纳米颗粒催化了活性Fe的阳极溶解动力学性能,因而明显改善了电极的高倍率与低温放电性能。展开更多
文摘采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。
文摘采用分段高温氧化固相法合成了掺杂La3+、F-的锂离子电池正极材料LiLa x Mn2-x F x O4-x(x=0、0.01、0.02和0.05)。结果发现,在小于等于1C时,掺杂与否对其放电容量影响不大;在2~10C时,掺杂可明显改善倍率性能;在15C时,掺杂量也显示出重要影响,未掺杂的LiMn2O4的高倍率放电能力仅为4%,而掺杂x=0.02的达到56%。XRD物相、CV循环伏安和EIS电化学阻抗分析支撑了倍率性能的实验结果,当不出现第二相时,随掺杂量增加,电荷转移电阻、阳极和阴极反应极化逐渐减小,反应可逆性逐渐增大,但当x=0.05出现第二相时,电荷转移电阻、阳极和阴极反应极化又开始增大。
基金supported by the National Key R&D Program of China(2017YFA0208200)the National Natural Science Foundation of China(51862026,22022505 and 21872069)+4 种基金the Aeronautical Science Foundation of China(2017ZF56027)the Natural Science Foundation of Jiangxi Province(20192ACBL21048)the Key Research and Development Program of Jiangxi Province(20203BBE53069)the Fundamental Research Funds for the Central Universities(020514380266,020514380272 and 020514380274)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008)。
文摘MnO_(2)作为超级电容器电极材料具有理论比电容高、成本低、环境友好等优点,但其低导电性和低利用率阻碍了其潜在应用.本研究首先在柔性碳布上电化学生长ZnO纳米棒阵列作为电极衬底,然后通过阳极电沉积法在ZnO纳米棒阵列表面外延生长了Mo和碳纳米管(CNTs)共掺杂的MnO_(2)薄膜,可控构筑了有效、高导电性的MnO_(2)纳米阵列电极(定义为ZnO@Mo-CNT-MnO_(2)NA).柔性ZnO@Mo-CNTMnO_(2)NA电极在100 A g^(-1)的大电流充放电密度下比电容可达237.5 F g^(-1),10,000次循环后电容保留率高达86%.采用ZnO@Mo-CNTMnO_(2)NA电极组装成水系非对称超级电容器,弯曲状态下在132.35 mW cm^(-3)(5mA cm^(-2))高功率密度下获得了1.13 mW h cm^(-3)的高能量密度,5mA cm^(-2)充放电倍率下循环7600次后电容保留率高达88%.本研究构筑的MnO_(2)基纳米阵列电极结构可提高其电导率和利用率,为柔性金属氧化物超级电容器电极的设计与制备提供新途径.
文摘为了提高锂硫电池电化学性能,针对其面临的多硫化锂穿梭问题,本文以还原氧化石墨烯(rGO)为生长基质,结合四硫化钒(VS4)与多价态钼(Mo)带来的吸附性能及硫空位修复优势,采用水热法制备了复合材料VS4/Mo@rGO作为锂硫正极材料中的载体组分,它不仅有更多的活性点位缓解穿梭效应,还能减少VS4本征硫空位的体积膨胀,为克制电解液中多硫化锂的溶解及极片失效粉化提供了较大帮助。通过熔融扩散法载硫后,该正极在负载量8 mg cm−2、0.3 C时首次放电915 mAh g−1,在10 mg cm−2负载电极的倍率测试中,其放电比容量中值仍有513 mAh g−1,整体倍率性能远高于rGO/S和CB@rGO/S。
文摘在锂离子电池(LIBs)和钠离子电池(SIBs)中,设计同时适用的负极材料,使其具有高倍率性能和超长循环寿命是亟需解决的工作。本文采用静电纺丝技术和硫化工程技术成功制备了一种均匀分布在N,S-掺杂炭纳米纤维上的MoO_(2)/MoS_(2)异质结构(MoO_(2)/MoS_(2)@NSC)。其中一维炭骨架作为导电框架可缩短Li^(+)/Na^(+)的扩散途径;炭纳米纤维中N/S杂原子的掺杂引入了丰富的活性位点,显著增强了离子扩散动力学。此外,在MoO_(2)相中通过原位形成的MoS_(2)纳米片强化了异质界面,MoO_(2)和MoS_(2)之间异质界面的构建使得Li^(+)/Na^(+)的快速传输成为实现高效储能的关键。因此,作为LIBs负极材料时,MoO_(2)/MoS_(2)@NSC电极在5.0 A g^(−1)的电流密度下循环2000圈后,仍具有640 mAh g^(−1)的优异放电比容量,每圈的容量衰减率仅为0.002%;在10.0 A g^(−1)的高电流密度下可达到614 mAh g^(−1)的放电比容量。对于SIBs,在2.0 A g^(−1)的电流密度下循环2000圈后其可逆容量仍能达到242 mAh g^(−1)。本工作采用一种新颖的界面调控策略来合理地设计负极材料,从而提高Li^(+)/Na^(+)储存动力学,实现超长寿命的循环性能。
文摘通过在碱液中阴极还原铁酸铜(t-CuFe_2O_4)简便地实现了纳米Fe/Cu复合材料的自组装。采用循环伏安(CV)与X射线衍射(XRD)分析了自组装过程中的相变。通过透射电镜(TEM)、选区电子衍射(SAED)以及扫描透射-能谱分析(STEM-EDX)的表征可以发现电结晶得到的铁、铜纳米颗粒分布均匀且接触紧密。当用于铁镍电池负极时,Fe/Cu纳米复合电极展现了较好的放电容量与充电接收能力,并具备优异的高倍率与低温性能。当电流密度高达4 500 m A·g_(Fe)^(-1)或运行温度仅为-40℃时,该电极仍拥有很好的输出容量与电位特性。线性扫描伏安(LSV)分析证明了该电极中原位生成的Cu纳米颗粒催化了活性Fe的阳极溶解动力学性能,因而明显改善了电极的高倍率与低温放电性能。