期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
基于多分支空谱特征增强的高光谱图像分类 被引量:1
1
作者 李铁 李文许 +1 位作者 王军国 高乔裕 《液晶与显示》 CAS CSCD 北大核心 2024年第6期844-855,共12页
为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和... 为了解决高光谱图像自身及分类过程中噪声干扰大、空间-光谱特征信息提取不足以及有限样本下分类性能不佳等问题,提出一种基于多分支空谱特征增强的高光谱图像分类模型SSFE-MBACNN。首先,利用多分支特征提取模块分别提取浅层空谱特征和深层空间特征信息,并引入注意力机制抑制噪声干扰。其次,设计一种改进多尺度空谱特征提取融合模块及结合双池化和空洞卷积的空间特征增强模块实现空谱特征增强,减少模型参数量和提高分类性能。最后,用全局平均池化层代替全连接层,进一步降低参数量,缓解模型过拟合问题。实验结果表明,在Indian Pines(10%训练样本)、Pavia University (5%训练样本)和Salinas(1%训练样本)数据集分别取得了0.990 7、0.997 5和0.994 7的总体分类精度。SSFE-MBACNN不仅能充分利用空谱特征信息,而且在有限样本下也取得了优秀的分类性能,明显高于其他对比方法。 展开更多
关键词 高光谱图像分类 特征增强 多分支特征提取 注意力机制 多尺度特征 双池化 空洞卷积
下载PDF
注意力机制的混合卷积高光谱图像分类方法
2
作者 刘玉娟 刘颜达 +3 位作者 闫振 张智勇 曹益铭 宋莹 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2916-2922,共7页
高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(... 高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(CNN)因强大的特征提取能力广泛应用于高光谱图像分类方法研究中,取得了有效的研究成果,但该类方法通常单独基于2D-CNN或3D-CNN进行,针对高光谱图像的单一特征,一是不能充分利用高光谱数据本身完整的特征信息;二是虽然相应提取网络局部特征优化性好,但是整体泛化能力不足,在深度挖掘HSI的空间和光谱信息方面存在局限性。鉴于此,提出了基于注意力机制的混合卷积神经网络模型(HybridSN_AM),使用主成分分析法对高光谱图像进行降维,采用卷积神经网络作为分类模型的主体,通过注意力机制筛选出更有区分度的特征,使模型能够提取到更精确、更核心的空间-光谱信息,实现高光谱图像的高精度分类。对Indian Pines(IP)、University of Pavia(UP)和Salinas(SA)三个数据集进行了应用实验,结果表明,基于该模型的目标图像总体分类精度、平均分类精度和Kappa系数均高于98.14%、97.17%、97.87%。与常规HybridSN模型对比表明,HybridSN_AM模型在三个数据集上的分类精度分别提升了0.89%、0.07%和0.73%。有效解决了高光谱图像空间-光谱特征提取与融合的难题,提高HSI分类的精度,具有较强的泛化能力,充分验证了注意力机制结合混合卷积神经网络在高光谱图像分类中的有效性和可行性,对高光谱图像分类技术的发展及应用具有重要的科学价值。 展开更多
关键词 高光谱图像分类 注意力机制 卷积神经网络 多特征融合 主成分分析
下载PDF
基于多尺度非对称密集网络的高光谱图像分类
3
作者 蔡轶珩 谭美伶 +1 位作者 潘建军 何楷祺 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第4期1448-1457,共10页
近年来,基于有限标记样本的高光谱图像(HSI)分类方法取得了重大进展。然而,由于高光谱图像的特殊性,冗余的信息和有限的标记样本给提取强判别特征带来了巨大挑战。此外,由于各类别像素分布不均,如何强化中心像素的作用,减弱不同类别的... 近年来,基于有限标记样本的高光谱图像(HSI)分类方法取得了重大进展。然而,由于高光谱图像的特殊性,冗余的信息和有限的标记样本给提取强判别特征带来了巨大挑战。此外,由于各类别像素分布不均,如何强化中心像素的作用,减弱不同类别的周围像素的负面影响也是提高分类性能的关键。为了克服上述局限性,该文提出一种基于多尺度非对称密集网络(MS-ADNet)的高光谱图像分类方法。首先,提出一个多尺度样本构建模块,通过在每个像素周围提取多个尺度的图像块,并进行反卷积和拼接以构建输入样本,使其既包含详细的结构区域,又包含较大的同质区域;然后,提出一个非对称密集连接结构,在空间和光谱特征联合提取中实现核骨架增强,即增强了方形卷积核的中心十字区域部分提取的特征,有效地促进了特征重用。此外,为了提高光谱特征的鉴别性,提出一种精简的元素光谱注意力机制,并将其置于密集连接网络的前端和后端。在每类仅采用5个样本进行网络训练的情况下,该方法在Indiana Pines, Pavia University和Salinas数据集上的总体准确率分别达到了77.66%, 84.54%和92.39%,取得了极具竞争力的分类结果。 展开更多
关键词 高光谱图像分类 多尺度 非对称卷积 光谱注意力机制
下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
4
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
下载PDF
卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法 被引量:1
5
作者 赵凤 耿苗苗 +2 位作者 刘汉强 张俊杰 於俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2237-2248,共12页
高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复... 高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复杂多样的结构,且不同地物之间存在尺度差异。现有的二者结合的方法通常对多尺度地物目标的纹理和结构信息的提取能力有限。为了克服上述局限性,该文提出CNN与视觉Transformer联合驱动的跨层多尺度融合网络HSI分类方法。首先,从结合CNN与视觉Transformer的角度出发,设计了跨层多尺度局部-全局特征提取模块分支,其主要由卷积嵌入的视觉Transformer和跨层特征融合模块构成。具体来说,卷积嵌入的视觉Transformer通过深度融合多尺度CNN与视觉Transformer实现了多尺度局部-全局特征信息的有效提取,从而增强网络对不同尺度地物的关注。进一步地,跨层特征融合模块深度聚合了不同层次的多尺度局部-全局特征信息,以综合考虑地物的浅层纹理信息和深层结构信息。其次,构建了分组多尺度卷积模块分支来挖掘HSI中密集光谱波段潜在的多尺度特征。最后,为了增强网络对HSI中局部波段细节和整体光谱信息的挖掘,设计了残差分组卷积模块对局部-全局光谱特征进行提取。Indian Pines, Houston 2013和Salinas Valley 3个HSI数据集上的实验结果证实了所提方法的有效性。 展开更多
关键词 高光谱图像分类 卷积神经网络 视觉Transformer 多尺度特征 融合网络
下载PDF
基于多注意力机制与编译图神经网络的高光谱图像分类 被引量:1
6
作者 孙杰 杨静 +2 位作者 丁书杰 李少波 胡建军 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期183-192,212,共11页
针对高光谱图像(Hyperspectral image,HSI)分类研究中小样本学习时,无法达到理想分类效果的问题,以多注意力机制融合、编译图神经网络与卷积神经网络有机结合提出了一种新的高光谱图像分类方法。设计了一种基于混合注意力机制的网络(Mul... 针对高光谱图像(Hyperspectral image,HSI)分类研究中小样本学习时,无法达到理想分类效果的问题,以多注意力机制融合、编译图神经网络与卷积神经网络有机结合提出了一种新的高光谱图像分类方法。设计了一种基于混合注意力机制的网络(Multiple mixed attention convolutional neural network,MCNN)与编译图神经网络(Compiled graph neural network,CGNN),在学习样本有限的情况下,其能有效保留HSI的光谱与空间信息。引入的图编码器与图解码器可以有效地映射不规则的HSI地物类别特征信息。设计的多注意力机制可以重点关注一些重要的空间像素特征。研究了不同训练样本下对不同算法学习示例分类的影响,在公共数据集Botswana(BS)的实验表明,本文方法比CEGCN(CNN-enhanced graph convolutional network)、WFCG(Weighted feature fusion of convolutional neural network)算法总体分类精度(Overall classification accuracy,OA)分别高2.72、3.86个百分点。同样在IndianPines(IP)数据集上仅用3%训练样本数据的实验结果显示,本研究方法比CEGCN与WFCG算法的OA分别高0.44、1.42个百分点。说明本研究提出的方法不仅对HSI具有良好的空间与光谱信息感知能力,而且在微小学习数据下仍然表现出强有力的分类准确性。 展开更多
关键词 高光谱图像分类 图神经网络 注意力机制 超像素分割
下载PDF
基于轻量级全连接张量映射网络的高光谱图像分类方法
7
作者 林知心 郑玉棒 +2 位作者 马天宇 王蕊 李恒超 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3541-3551,共11页
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全... 近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量. 展开更多
关键词 高光谱图像分类 模型压缩 全连接张量网络分解 卷积神经网络 张量神经网络 轻量卷积模块
下载PDF
基于三维小波变换的高光谱图像分类算法
8
作者 党琦 刘德山 +1 位作者 闫德勤 张宇 《大连工业大学学报》 CAS 2024年第3期228-234,共7页
针对如何充分利用空间特征来达到较高的高光谱图像分类精度的问题,提出了一种基于三维离散小波变换(3D-DWT)与随机补丁网络(RPNet)结合的高光谱图像的地物属性分类算法。在分类过程中,综合3D-DWT提取的特征和RPNet深度学习框架提取的特... 针对如何充分利用空间特征来达到较高的高光谱图像分类精度的问题,提出了一种基于三维离散小波变换(3D-DWT)与随机补丁网络(RPNet)结合的高光谱图像的地物属性分类算法。在分类过程中,综合3D-DWT提取的特征和RPNet深度学习框架提取的特征,利用支持向量机(SVM)对特征向量进行分类。所提出的方法在Indian Pines和University of Pavia两个数据集上进行测试,结果表明该方法比现有方法有显著的分类性能的提高。 展开更多
关键词 三维离散小波变换(3D-DWT) 随机补丁网络(RPNet) 支持向量机(SVM) 高光谱图像分类
下载PDF
基于深度特征提取残差网络的高光谱图像分类
9
作者 赵雪松 付民 刘雪峰 《电子测量技术》 北大核心 2024年第18期120-129,共10页
深度学习由于其模块化设计和强大的特征提取能力,已成为高光谱图像分类的重要手段之一。然而,如何有效地提取更深层次的特征以及同时提高分析空间和光谱联合特征的能力仍是亟待解决的问题。针对这些问题,本文提出了一种深度特征提取的... 深度学习由于其模块化设计和强大的特征提取能力,已成为高光谱图像分类的重要手段之一。然而,如何有效地提取更深层次的特征以及同时提高分析空间和光谱联合特征的能力仍是亟待解决的问题。针对这些问题,本文提出了一种深度特征提取的残差网络,该网络由两个关键部分组成:多级传递融合残差网络和空间-光谱多分辨率融合注意力残差网络。多级传递融合残差网络可以有效促进特征信息之间的相互作用,获得更深层次的特征。接着利用空间-光谱多分辨率融合注意力残差网络可以确保从高光谱数据中全面提取空间-光谱联合特征和多分辨率特征。为了验证其有效性,本文在Indian Pines,Pavia University和Salinas Valley三个高光谱数据集上对所提出方法的性能进行了评估,分类精度分别达到了98.10%,99.81%和99.94%。实验结果表明,与其他方法相比,该网络具有更好的泛化能力和分类性能。 展开更多
关键词 高光谱图像分类 残差网络 空间-光谱联合特征 多分辨率
下载PDF
一种小样本情境下的高光谱图像分类算法
10
作者 张裕 陈立伟 崔颖 《应用科技》 CAS 2024年第3期135-140,共6页
Gabor滤波器是一种常见的空间特征提取技术,在针对高光谱图像分类中已标记样本稀缺的问题上,该算法通过设置不同方向的多个3D-Gabor滤波器,生成大量多视图。在多视图数据基础上生成多个图连接实现标签传播,将多个图标签传播后的分类结... Gabor滤波器是一种常见的空间特征提取技术,在针对高光谱图像分类中已标记样本稀缺的问题上,该算法通过设置不同方向的多个3D-Gabor滤波器,生成大量多视图。在多视图数据基础上生成多个图连接实现标签传播,将多个图标签传播后的分类结果融合得到预测标结果。而超像素主成分分析法算法则是一种简单但非常有效的无监督特征提取方法,将预测结果与加入了超像素主成分分析法的分类器相加权融合得到更为准确的分类结果。将算法在3个数据集上进行仿真实验,结果表明通过应用Gabor滤波器的传统高光谱图像分类算法存在运算量大且耗时长,而该算法能够在保证精度的同时有效减少计算及时间上的消耗,节约成本。 展开更多
关键词 小样本 高光谱图像分类 3D-Gabor滤波器 多视图 标签传播 超像素分割 半监督学习 主动学习
下载PDF
基于结构化特征重构的高光谱图像分类
11
作者 邢长达 汪美玲 +1 位作者 徐雍倡 王志胜 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3010-3022,共13页
特征提取是高光谱图像分类的关键.现有分类方法在特征提取时,往往忽略特征的信息保有量和空间分布等因素,导致输出的特征可能面临低信息保有量与无序分布等问题,预测结果不佳.为此,本文提出一种基于结构化特征重构的高光谱图像分类方法... 特征提取是高光谱图像分类的关键.现有分类方法在特征提取时,往往忽略特征的信息保有量和空间分布等因素,导致输出的特征可能面临低信息保有量与无序分布等问题,预测结果不佳.为此,本文提出一种基于结构化特征重构的高光谱图像分类方法,能够有效地减少特征提取过程中信息丢失,提高信息保有量,并充分考虑特征的空间分布,增强特征的判别性.借鉴重构思想以及自表达理论,建立结构特征重构的特征表示模型,可提升图像信息的利用率,并描述反映有序分布的结构信息.针对建立的多变量模型,设计一种基于交替更新的优化策略来求解模型.利用支持向量机来对特征进行分类计算和标签预测.利用Salinas、Pavia Center、Botswana以及Houston数据进行实验验证,结果表明,本文算法优于现有的分类模型,在OA(Overall Accuracy)、AA(Average Accuracy)以及Kappa系数等指标上平均提升了2.6%、3.9%、3.3%. 展开更多
关键词 高光谱图像分类 信息保有量 结构化特征重构 特征分布 自表达 模型优化 支持向量机
下载PDF
一种结合多尺度策略的光谱-空间注意力网络用于高光谱图像分类
12
作者 田亮 陈昊兵 郑波尽 《中南民族大学学报(自然科学版)》 CAS 2024年第4期532-539,共8页
针对高光谱图像(HSI)分类任务中光谱和空间局部细节特征提取不足的问题,提出了一种创新的光谱-空间注意力网络MSSAN.该网络结构包含光谱和空间特征提取模块,每个模块都集成了多尺度扩张卷积块、残差提取块、密集提取块和注意力机制.残... 针对高光谱图像(HSI)分类任务中光谱和空间局部细节特征提取不足的问题,提出了一种创新的光谱-空间注意力网络MSSAN.该网络结构包含光谱和空间特征提取模块,每个模块都集成了多尺度扩张卷积块、残差提取块、密集提取块和注意力机制.残差和密集提取块整合浅层和深层特征,多尺度扩张卷积块辅助提取局部细节特征.随后的注意力机制凸显关键特征,充分利用光谱和空间信息.对比实验显示:MSSAN在IP、UP和SV三个数据集上表现出色,优于目前的先进算法.消融实验验证了MSSAN各模块组合的有效性. 展开更多
关键词 高光谱图像分类 卷积神经网络 多尺度卷积 注意力机制
下载PDF
结合组像素嵌入的双注意力高光谱图像分类
13
作者 谭云飞 李明 +2 位作者 罗勇航 石超山 文贵豪 《计算机技术与发展》 2024年第9期147-153,共7页
近年来,基于深度学习的框架在高光谱图像分类领域中取得了令人满意的结果。然而,多数方法仍使用卷积神经网络作为主干网络,其存在感受野过小,对特征信息的挖掘不充分,序列建模的能力较弱,模型复杂和分类精度低等问题。为克服上述局限性... 近年来,基于深度学习的框架在高光谱图像分类领域中取得了令人满意的结果。然而,多数方法仍使用卷积神经网络作为主干网络,其存在感受野过小,对特征信息的挖掘不充分,序列建模的能力较弱,模型复杂和分类精度低等问题。为克服上述局限性,该文提出一种结合组像素嵌入的双注意力高光谱图像分类的方法。该方法主要分成三个部分,首先,使用含有点卷积组和深度卷积组的通道空间卷积分离模块来高效学习空间光谱的特征信息;其次,添加通道空间双注意力机制,抑制冗余信息的干扰,增强高光谱图像空间与光谱的特征权重;最后,通过组像素嵌入Transformer来进一步强化空间与光谱之间的联系,建立全局长距离依赖关系,缓解精度下降的问题,保证了网络良好的分类性能。实验结果表明,该方法与现有的网络模型相比具有更优越的性能,在Pavia University和WHU-Hi-LongKou两个数据集中的总体准确率分别达到99.26%和99.73%。 展开更多
关键词 高光谱图像分类 卷积神经网络 通道空间卷积分离 双注意力机制 组像素嵌入Transformer
下载PDF
深度学习赋能的高光谱图像分类研究进展
14
作者 白林锋 陈增俊 +3 位作者 周玲 张妍妍 路凯 张卫东 《海军航空大学学报》 2024年第5期535-545,586,共12页
随着高光谱成像技术的发展,高光谱图像分类备受关注。在广泛调研的基础上,文章全面整理了基于深度学习的高光谱图像分类方法,主要涵盖深度网络、循环网络和自注意力网络。随后,深入讨论了几个具有代表性的方法,详细探讨了这些方法的优... 随着高光谱成像技术的发展,高光谱图像分类备受关注。在广泛调研的基础上,文章全面整理了基于深度学习的高光谱图像分类方法,主要涵盖深度网络、循环网络和自注意力网络。随后,深入讨论了几个具有代表性的方法,详细探讨了这些方法的优势和不足,旨在提供一个更清晰、全面的高光谱图像分类方法现状。文章对高光谱图像分类方法进行了全面的概述,并对各类方法进行了深入研究,分析了不同方法的定性和定量评估结果,对未来的发展进行了展望。梳理现有研究,不仅有助于推动高光谱遥感技术的进一步发展,还凸显了高光谱图像分类方法在航空航天等领域的独特优势,对于提高遥感数据的解译精度和实际应用价值具有重要意义。 展开更多
关键词 高光谱图像分类 深度网络 循环网络 自注意力网络
下载PDF
混合深度CNN联合注意力的高光谱图像分类 被引量:6
15
作者 王燕 吕艳萍 《计算机科学与探索》 CSCD 北大核心 2023年第2期385-395,共11页
深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出... 深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出了混合深度卷积联合注意力(HDC-Attention)的模型。首先利用核主成分分析(KPCA)和小批量K均值(MBK-means)对高光谱图像进行组合降维,有效地消除数据冗余并保留主要信息量,使得降维后的数据具有最佳区分度。然后将降维后的数据输入HDC网络进行充分的光谱-空间特征提取。最后利用光谱-空间注意力,重新分配光谱-空间特征的权重,增强有用的空谱特征,抑制无用的特征。提出的模型在三个公开数据集上进行了多次实验,在有限的标记样本下,三个数据集的OA、AA、Kappa分类指标均超过99%。 展开更多
关键词 高光谱图像分类 核主成分分析(KPCA) 卷积神经网络(CNN) 光谱-空间注意力机制 深度学习
下载PDF
基于全局注意力信息交互的高光谱图像分类 被引量:1
16
作者 王雷全 周家梁 林瑶 《计算机系统应用》 2023年第5期28-35,共8页
近年来,研究者们发现基于双分支结构的高光谱图像分类方法可以更有效地提取图像的光谱特征和空间特征用于分类.但在双分支结构中,各分支只侧重于细化、提取光谱特征或空间特征,忽略了对光谱-空间跨维特征交互的研究,且两分支各自提取的... 近年来,研究者们发现基于双分支结构的高光谱图像分类方法可以更有效地提取图像的光谱特征和空间特征用于分类.但在双分支结构中,各分支只侧重于细化、提取光谱特征或空间特征,忽略了对光谱-空间跨维特征交互的研究,且两分支各自提取的部分交互不明显,因此影响了分类的性能.针对这一问题,本文提出了一种基于全局注意力信息交互的高光谱图像分类方法.首先采用密集连接网络分两个分支分别细化图像的光谱特征和空间特征,然后结合全局注意力机制(GAM)得到通道全局注意力特征和空间全局注意力特征,最后通过一个信息交互的模块实现光谱和空间信息的交互,更充分地利用光谱和空间信息实现分类.本文提出的方法分别在Pavia University(PU)和Salinas Valley(SV)两个数据集上进行了实验,相较于其他的4种方法,本文提出的方法在分类性能上取得了明显的提升. 展开更多
关键词 图像处理 高光谱图像分类 信息交互 注意力机制 跨维信息
下载PDF
融合超像素和多属性形态学轮廓方法的高光谱图像分类
17
作者 李雷 孙希延 +1 位作者 纪元法 付文涛 《自然资源遥感》 CSCD 北大核心 2023年第4期114-121,共8页
基于超像素分割的图像处理方法近年来被广泛应用于高光谱遥感图像(hyperspectral image,HSI)分类过程中,但是其单一尺度下无法充分提取HSI的丰富信息,且分类过程受参数依赖严重。因此针对基于超像素分割的HSI分类技术利用空间信息不足... 基于超像素分割的图像处理方法近年来被广泛应用于高光谱遥感图像(hyperspectral image,HSI)分类过程中,但是其单一尺度下无法充分提取HSI的丰富信息,且分类过程受参数依赖严重。因此针对基于超像素分割的HSI分类技术利用空间信息不足的问题,提出一种超像素分割方法和扩展多属性轮廓(extended multi-attribute profile,EMAP)方法相结合的HSI图像分类方法。该方法首先采用超像素分割方法提取超像素级特征,同时利用EMAP方法提取像素级HSI特征,融合2种特征后的图像具有完整的HSI结构特性,考虑到融合之后的信息冗余,采用递归滤波的方法进行光谱学滤波,最后将特征输入到支持向量机(support vector machine,SVM)分类器中,确定像素的标签。在Indian Pines和University of Pavia这2个数据集上实验,分析了参数的变化对分类精度的影响,并与其他同类算法相比较,分类精度和Kappa系数较S3-PCA方法分别提高了3.55百分点和2.88百分点。 展开更多
关键词 高光谱图像分类 信息融合 特征提取 超像素分割
下载PDF
融合雷达数据的高光谱图像分类
18
作者 李琦 崔行帅 +1 位作者 张雅静 解玉琪 《计算机与数字工程》 2023年第4期798-802,共5页
高光谱图像分类是高光谱遥感的一项重要内容。然而,由于高光谱数据光谱波段信息丰富,且仅对材质信息敏感等特性,导致高光谱分类中易出现“维度灾难”、对高度信息不敏感等问题,这使得高光谱图像分类面临巨大的挑战。为解决上述问题,论... 高光谱图像分类是高光谱遥感的一项重要内容。然而,由于高光谱数据光谱波段信息丰富,且仅对材质信息敏感等特性,导致高光谱分类中易出现“维度灾难”、对高度信息不敏感等问题,这使得高光谱图像分类面临巨大的挑战。为解决上述问题,论文设计了一种双路DenseNet网络(Double-Branch DenseNet,DBD)。该网络其中一路对高光谱数据进行特征处理,压缩光谱维度,降低“维度灾难”的影响,并同步提取高光谱数据的光谱特征和空间特征;另一路通过密集连接提取雷达数据的高程特征。两路特征进行特征级融合,得到具有高程信息的高光谱特征,从而进行分类。通过实验证明,将富含高程信息的雷达数据与富含光谱信息的高光谱数据融合后进行分类的分类结果要优于单纯使用高光谱数据进行分类。 展开更多
关键词 高光谱图像分类 数据融合 DenseNet网络
下载PDF
融合ConvLSTM和多注意力机制网络的高光谱图像分类 被引量:3
19
作者 唐婷 潘新 +1 位作者 罗小玲 郜晓晶 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第8期2608-2616,共9页
近年来,基于深度学习的模型在高光谱图像(HSI)分类方面效果显著。针对小样本数据基于深度学习的高光谱图像分类方法分类精度不高的问题,提出一种融合卷积长短期记忆(ConvLSTM)和多注意力机制网络的高光谱图像分类方法。该方法分三个分支... 近年来,基于深度学习的模型在高光谱图像(HSI)分类方面效果显著。针对小样本数据基于深度学习的高光谱图像分类方法分类精度不高的问题,提出一种融合卷积长短期记忆(ConvLSTM)和多注意力机制网络的高光谱图像分类方法。该方法分三个分支:光谱分支、空间X分支和空间Y分支分别提取光谱特征、空间X特征和空间Y特征,并将三个方向的特征融合进行高光谱图像分类。由于ConvLSTM在学习有价值的特征和对光谱数据中的长期依赖关系建模方面表现出良好的性能,所以在光谱分支中用了3个隐藏层、卷积核大小为3×3、通道分别为150、100和60提取光谱信息。在空间X分支和空间Y分支,采用基于DenseNet和3D-CNN的Dense空间X块和Dense空间Y块分别提取空间X特征和空间Y特征。为了增强特征提取,在这三个分支中还分别引入了其特征方向的注意力机制,针对信息丰富的光谱波段设计了光谱注意块,信息丰富的像素点分别设计了空间X和空间Y注意块。在三个公开的高光谱数据集上进行了实验,即Indian Pines(IP)、Pavia University(UP)和Salinas Valley(SV)数据集;并对比了其他五种方法:基于RBF径向核的支持向量机模型(SVM)、更深更广的卷积神经网络模型(CDCNN)、快速密集光谱-空间卷积网络模型(FDSSC)、空谱残差网络模型(SSRN)、双分支双注意力机制网络模型(DBDA)。实验中,IP数据集上训练样本和验证样本的大小设为总样本的3%,UP和SV数据集上训练样本和验证样本的大小设为总样本的0.5%。该方法和所有基于深度学习的方法,批处理大小均设置为16,优化器设为Adam,学习率设置为0.0005,并动态调整学习率。由于SVM直接利用光谱信息进行分类,输入样本块像素大小为1×1,其他基于深度学习方法的输入样本块像素均设置为9×9。实验结果表明,该方法能充分利用高光谱图像的光谱和空间特征,在OA、AA、KAPPA等评价标准上均获得了更好的效果,其中,该方法的OA指标比次优的算法平均提高0.12%~2.04%。 展开更多
关键词 高光谱图像分类 深度学习 ConvLSTM 卷积神经网络 注意力机制
下载PDF
基于混合卷积与三重注意力的高光谱图像分类网络 被引量:3
20
作者 王瑞婷 王海燕 +2 位作者 陈晓 耿信哲 雷涛 《智能系统学报》 CSCD 北大核心 2023年第2期260-269,共10页
针对高光谱图像光谱维度高、现有网络无法提供深度级的多层次特征,从而影响分类精度和速度的问题。首先采用核主成分分析对高光谱图像进行降维,使降维后的数据具有最佳区分度,提出了一种基于混合卷积与三重注意力的卷积神经网络(hybrid ... 针对高光谱图像光谱维度高、现有网络无法提供深度级的多层次特征,从而影响分类精度和速度的问题。首先采用核主成分分析对高光谱图像进行降维,使降维后的数据具有最佳区分度,提出了一种基于混合卷积与三重注意力的卷积神经网络(hybrid convolutional neural network with triplet attention, HCTA-Net)模型,该模型设计了一种基于三维、二维和一维卷积的混合卷积神经网络,通过不同维度卷积神经网络的融合,提取高光谱图像精细的光谱–空间联合特征。在二维卷积中加入深度可分离卷积,减少了模型参数,同时引入三重注意力机制,使用三分支结构实现跨维度信息交互,抑制无用的特征信息。在Indian Pines、Salinas和Pavia University数据集上的实验结果表明,本文提出的模型优于其他对比方法,总体分类精度分别达到了99.16%、99.87%和99.76%。 展开更多
关键词 遥感 高光谱图像分类 深度学习 特征提取 降维 深度可分离卷积 注意力机制 混合卷积神经网络
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部