Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multi...Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multifactorial, combining a cytotoxic brain edema due to the astrocytic accumulation of glutamine, and an increase in cerebral blood volume and cerebral blood flow, in part due to inflammation, to glutamine and to toxic products of the diseased liver. Validated methods to control intracranial hypertension in fulminant hepatic failure patients mainly include mannitol, hypertonic saline, indomethacin, thiopental, and hyperventilation. However all these measures are often not sufficient in absence of liver transplantation, the only curative treatment of intracranial hypertension in fulminant hepatic failure to date. Induced moderate hypothermia seems very promising in this setting, but has to be validated by a controlled, randomized study. Artificial liver support systems have been under investigation for many decades. The bioartiflcial liver, based on both detoxification and swine liver cells, has shown some efficacy on reduction of intracranial pressure but did not show survival benefit in a controlled, randomized study. The Molecular Adsorbents Recirculating System has shown some efficacy in decreasing intracranial pressure in an animal model of liver failure, but has still to be evaluated in a phase Ⅲ trial.展开更多
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ...Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.展开更多
文摘Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multifactorial, combining a cytotoxic brain edema due to the astrocytic accumulation of glutamine, and an increase in cerebral blood volume and cerebral blood flow, in part due to inflammation, to glutamine and to toxic products of the diseased liver. Validated methods to control intracranial hypertension in fulminant hepatic failure patients mainly include mannitol, hypertonic saline, indomethacin, thiopental, and hyperventilation. However all these measures are often not sufficient in absence of liver transplantation, the only curative treatment of intracranial hypertension in fulminant hepatic failure to date. Induced moderate hypothermia seems very promising in this setting, but has to be validated by a controlled, randomized study. Artificial liver support systems have been under investigation for many decades. The bioartiflcial liver, based on both detoxification and swine liver cells, has shown some efficacy on reduction of intracranial pressure but did not show survival benefit in a controlled, randomized study. The Molecular Adsorbents Recirculating System has shown some efficacy in decreasing intracranial pressure in an animal model of liver failure, but has still to be evaluated in a phase Ⅲ trial.
基金Projects(51374112/E0409,51109084/E090701) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY112) supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(SKLGP2013K014) supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology),ChinaProject(SKLGDUEK1304) supported by the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China
文摘Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.