以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征...以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。展开更多
文摘以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。