Nickel oxide(NiO)microsphere with a large surface area was novelly synthesized through nickel bicarbonate(Ni(HCO3)2)precursor.The obtained nickel oxide(NiO)microsphere was characterized by X-ray pattern diffraction,sc...Nickel oxide(NiO)microsphere with a large surface area was novelly synthesized through nickel bicarbonate(Ni(HCO3)2)precursor.The obtained nickel oxide(NiO)microsphere was characterized by X-ray pattern diffraction,scanning electron microscopy,CO2 temperature-programmed desorption,H2 temperature-programmed reduction,N2 adsorption/desorption and laser scattering particle size distribution analyzer.It was found that nickel oxide(NiO)synthesized by the thermal decomposition of Ni(HCO3)2through area hydrolysis,presented very nice microsphere with high surface area.The catalytic properties of obtained nickel oxide(NiO)microsphere were studied in the reaction of carbon dioxide reforming of methane where 91.3% conversion of CH4 with 93% conversion of CO2 was observed.Besides,the catalyst maintained high stability over 200 h on the stream.展开更多
基金Project(50872086)supported by the National Natural Science Foundation of ChinaProject(2012021006-3)supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(2012L022)supported by the Special/Youth Foundation of Taiyuan University of Technology,ChinaProject(120238)supported by the Science and Technology Department of Taiyuan,China
文摘Nickel oxide(NiO)microsphere with a large surface area was novelly synthesized through nickel bicarbonate(Ni(HCO3)2)precursor.The obtained nickel oxide(NiO)microsphere was characterized by X-ray pattern diffraction,scanning electron microscopy,CO2 temperature-programmed desorption,H2 temperature-programmed reduction,N2 adsorption/desorption and laser scattering particle size distribution analyzer.It was found that nickel oxide(NiO)synthesized by the thermal decomposition of Ni(HCO3)2through area hydrolysis,presented very nice microsphere with high surface area.The catalytic properties of obtained nickel oxide(NiO)microsphere were studied in the reaction of carbon dioxide reforming of methane where 91.3% conversion of CH4 with 93% conversion of CO2 was observed.Besides,the catalyst maintained high stability over 200 h on the stream.