Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
The microstructural evolution of a 18R single phase (S 18) alloy during annealing at 773 K for 100 h was investigated in order to reveal the formation mechanism of 14H phase. The results showed that the as-cast S 18...The microstructural evolution of a 18R single phase (S 18) alloy during annealing at 773 K for 100 h was investigated in order to reveal the formation mechanism of 14H phase. The results showed that the as-cast S 18 alloy was composed of 18R phase (its volume fraction exceeds 93%), W particles and α-Mg phase. The 18R phase in S18 alloy was thermally stable and was not transformed into 14H long period stacking ordered (LPSO) phase during annealing. However, 14H lamellas formed within tiny α-Mg slices, and their average size and volume fraction increased with prolonging annealing time. Moreover, the 14H phase is nucleated within α-Mg independently on the basis of basal stacking faults (SFs). The broadening growth of 14H lamellas is an interface-controlled process which involves ledges on basal planes, while the lengthening growth is a diffusion-controlled process and is associated with diffusion of solute atoms. The formation mechanism of 14H phase in this alloy could be explained as α-Mg'→α-Mg+14H.展开更多
In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cas...In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.展开更多
Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied usin...Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.展开更多
In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated s...In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out.The results show that the grain size of sintered samples matches with the powder particles after ball milling.The relative densities of sintered and hot extruded samples reach 99.1%and 100%,respectively.Owing to the comprehensive mechanism of grain refinement,aging and dispersion strengthening,the ultimate tensile strength,yield strength and elongation of the Al-10Zn-3.5Mg-1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa,770 MPa and 8%,respectively.展开更多
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o...Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.展开更多
The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the tempera...The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 ℃, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy(TEM) and electron backscattered diffraction(EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 ℃, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed.展开更多
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.
基金Project(BK20160869)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(GY12015009)supported by the Nantong Science and Technology Program,China+1 种基金Project(2015B01314)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51501039)supported by the National Natural Science Foundation of China
文摘The microstructural evolution of a 18R single phase (S 18) alloy during annealing at 773 K for 100 h was investigated in order to reveal the formation mechanism of 14H phase. The results showed that the as-cast S 18 alloy was composed of 18R phase (its volume fraction exceeds 93%), W particles and α-Mg phase. The 18R phase in S18 alloy was thermally stable and was not transformed into 14H long period stacking ordered (LPSO) phase during annealing. However, 14H lamellas formed within tiny α-Mg slices, and their average size and volume fraction increased with prolonging annealing time. Moreover, the 14H phase is nucleated within α-Mg independently on the basis of basal stacking faults (SFs). The broadening growth of 14H lamellas is an interface-controlled process which involves ledges on basal planes, while the lengthening growth is a diffusion-controlled process and is associated with diffusion of solute atoms. The formation mechanism of 14H phase in this alloy could be explained as α-Mg'→α-Mg+14H.
基金Projects(2020YFB0311400ZL, 2020YFF0218202) supported by the National Key R&D Program of ChinaProject supported by Youth Fund Project of GRINM Group Co.,Ltd.,China。
文摘In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.
基金Projects(51675092,51775099)supported by the National Natural Science Foundation of ChinaProjects(E2018501030,E2018501033,E2018501032)supported by the Natural Science Foundation of Hebei Province,China.
文摘Mg-5.88 Zn-0.53 Cu-0.16 Zr(wt.%)alloy was solidified at 2-6 GPa using high-pressure solidification technology.The microstructure,strengthening mechanism and compressive properties at room temperature were studied using SEM and XRD.The results showed that the microstructure was refined and the secondary dendrite spacing changed from 35μm at atmospheric pressure to 10μm at 6 GPa gradually.Also,Mg(Zn,Cu)2 and Mg Zn Cu eutectic phases were distributed in the shape of network,while under high pressures the second phases(Mg(Zn,Cu)2 and Mg7 Zn3)were mainly granular or strip-like.The solid solubility of Zn and Cu in the matrix built up over increasing solidification pressure and reached 4.12%and 0.32%respectively at 6 GPa.The hardness value was HV 90 and the maximum compression resistance was 430 MPa.Therefore,the grain refinement strengthening,the second phase strengthening and the solid solution strengthening are the principal strengthening mechanisms.
基金Project(FRF-GF-19-012AZ)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this work,a novel ultrahigh-strength Al-10Zn-3.5Mg-1.5Cu alloy was fabricated by powder metallurgy followed by hot extrusion.Investigations on microstructural evolution and mechanical properties of the fabricated samples were carried out.The results show that the grain size of sintered samples matches with the powder particles after ball milling.The relative densities of sintered and hot extruded samples reach 99.1%and 100%,respectively.Owing to the comprehensive mechanism of grain refinement,aging and dispersion strengthening,the ultimate tensile strength,yield strength and elongation of the Al-10Zn-3.5Mg-1.5Cu alloy after hot extrusion and subsequent heat treatment achieve 810 MPa,770 MPa and 8%,respectively.
基金financial supports from the National Natural Science Foundation of China(Nos.51675092,51775099)the Natural Science Foundation of Hebei Province,China(Nos.E2018501032,E2018501033)。
文摘Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.
基金Project(220636)supported by the Postdoctoral Science Foundation of the Central South University,ChinaProject(2016B090931004)supported by the Guangdong Province Science and Research Plan,ChinaProject(51601229)supported by the National Natural Science Foundation of China。
文摘The high temperature mechanical properties(250 ℃) and microstructure of a die-forged Al-5.87 Zn-2.07 Mg-2.42 Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 ℃, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy(TEM) and electron backscattered diffraction(EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 ℃, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed.