X-ray diffraction(XRD) and crystal structure analysis were used to study the effects of Mg content and cooling rate on the titanium phase transformation of three types of titanium slag. The results indicate that in ...X-ray diffraction(XRD) and crystal structure analysis were used to study the effects of Mg content and cooling rate on the titanium phase transformation of three types of titanium slag. The results indicate that in the rapid cooling process, the titanium phase is anosovite, whose chemical formula is MgnTi(3-n)O5(0n1). In the slow cooling process, when the Mg content is high, anosovite transforms into karrooite MgTi2O5 structure; when the Mg content is low, karrooite MgTi2O5 and rutile TiO2 both exist. The stability of karrooite MgTi2O5 is better than that of anosovite MgnTi(3-n)O5. Slow cooling contributes to the doping of Mg into the anosovite crystal and stabilises the anosovite crystal structure.展开更多
The suitable titanium slag composition with high titanium content for electric furnace smelting of vanadium titanomagnetite was investigated through thermodynamics and related phase diagram analysis.According to the t...The suitable titanium slag composition with high titanium content for electric furnace smelting of vanadium titanomagnetite was investigated through thermodynamics and related phase diagram analysis.According to the thermodynamic results,low-melting-point regions and MgTi2O5primary phase area in the phase diagrams,the suggested titanium slag composition for the present vanadium titanomagnetite metallized pellets should consist of50%TiO2,8%-12%MgO and13%Al2O3(mass fraction)with a binary basicity of0.8-1.2.Finally,the verified smelting experiments were conducted and successful separation of the molten iron from the titanium slag is obtained.The obtained vanadium-containing molten iron contains0.681%V and0.267%Ti,and the obtained titanium slag contains52.21%TiO2(mass fraction),in which MgTi2O5is the primary phase.The titanium resource in the final titanium slag production could be used to produce TiO2pigment by acid leaching methods.展开更多
Flotation is often employed to separate valuable natural minerals and gangue minerals.However,few studies have been conducted on artificial mineral flotation.Anosovite,the primary mineral in titanium slag,is a typical...Flotation is often employed to separate valuable natural minerals and gangue minerals.However,few studies have been conducted on artificial mineral flotation.Anosovite,the primary mineral in titanium slag,is a typical artificial mineral that can be enriched by flotation.In the present work,flotation behavior and adsorption mechanism of anosovite in salicylhydroxamic acid(SHA)solution were studied.The influence of pH and SHA dosage on anosovite flotability was investigated.Micro-flotation test results show that a pH range of 7–8.5 is available for SHA to collect anosovite.A maximum recovery of 93.26%can be obtained with SHA dosage of only 4×10.5 mol/L.In addition,TOC,zeta potential,FTIR,SEM-EDS,and XPS analyses were used to study the adsorption mechanism.Results demonstrated that SHA adsorption is governed by chemisorption.XPS studies further suggested that chemical adsorption occurred at the Ti sites on the anosovite surface.展开更多
基金Project(51090385)supported by the National Natural Science Foundation of China
文摘X-ray diffraction(XRD) and crystal structure analysis were used to study the effects of Mg content and cooling rate on the titanium phase transformation of three types of titanium slag. The results indicate that in the rapid cooling process, the titanium phase is anosovite, whose chemical formula is MgnTi(3-n)O5(0n1). In the slow cooling process, when the Mg content is high, anosovite transforms into karrooite MgTi2O5 structure; when the Mg content is low, karrooite MgTi2O5 and rutile TiO2 both exist. The stability of karrooite MgTi2O5 is better than that of anosovite MgnTi(3-n)O5. Slow cooling contributes to the doping of Mg into the anosovite crystal and stabilises the anosovite crystal structure.
文摘The suitable titanium slag composition with high titanium content for electric furnace smelting of vanadium titanomagnetite was investigated through thermodynamics and related phase diagram analysis.According to the thermodynamic results,low-melting-point regions and MgTi2O5primary phase area in the phase diagrams,the suggested titanium slag composition for the present vanadium titanomagnetite metallized pellets should consist of50%TiO2,8%-12%MgO and13%Al2O3(mass fraction)with a binary basicity of0.8-1.2.Finally,the verified smelting experiments were conducted and successful separation of the molten iron from the titanium slag is obtained.The obtained vanadium-containing molten iron contains0.681%V and0.267%Ti,and the obtained titanium slag contains52.21%TiO2(mass fraction),in which MgTi2O5is the primary phase.The titanium resource in the final titanium slag production could be used to produce TiO2pigment by acid leaching methods.
基金Project(51090385) supported by the Major Program of the National Natural Science Foundation of ChinaProjects(121102000000160001,121102000000170013) supported by the Ministry of Land and Resources Department Budget,China+1 种基金Project(DD20179133) supported by the Geological Survey and Evaluation Project of ChinaProject(2018M641439) supported by China Postdoctoral Science Foundation
文摘Flotation is often employed to separate valuable natural minerals and gangue minerals.However,few studies have been conducted on artificial mineral flotation.Anosovite,the primary mineral in titanium slag,is a typical artificial mineral that can be enriched by flotation.In the present work,flotation behavior and adsorption mechanism of anosovite in salicylhydroxamic acid(SHA)solution were studied.The influence of pH and SHA dosage on anosovite flotability was investigated.Micro-flotation test results show that a pH range of 7–8.5 is available for SHA to collect anosovite.A maximum recovery of 93.26%can be obtained with SHA dosage of only 4×10.5 mol/L.In addition,TOC,zeta potential,FTIR,SEM-EDS,and XPS analyses were used to study the adsorption mechanism.Results demonstrated that SHA adsorption is governed by chemisorption.XPS studies further suggested that chemical adsorption occurred at the Ti sites on the anosovite surface.