采用BIOLOG-ECO (Ecology Plate,ECO)技术,探讨龙门山地震带——银厂沟地区杂木林、竹林和松树林3种植被类型对土壤微生物群落多样性的影响.结果表明,随着培养时间的延长,土壤微生物群落的平均颜色变化率(Average Well Color Developmen...采用BIOLOG-ECO (Ecology Plate,ECO)技术,探讨龙门山地震带——银厂沟地区杂木林、竹林和松树林3种植被类型对土壤微生物群落多样性的影响.结果表明,随着培养时间的延长,土壤微生物群落的平均颜色变化率(Average Well Color Development,AWCD)均呈"S"型曲线增长,但3种植被类型土壤的AWCD值在增长速率和最大值方面存在一定的差异性;碳水化合物类、氨基酸类、醇类和酯类碳源是土壤微生物群落主要利用的碳源类型;当培养0~144 h时,竹林微生物群落的多样性最高,其次是杂木林,松树林最低,当培养144~240 h时,杂木林微生物群落的多样性高于竹林,松树林最低.研究结果说明植被类型可以影响其土壤微生物群落的多样性,同时也为龙门山地震带土壤生态系统的恢复和重建提供了科学依据.展开更多
采用16S r DNA变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术,结合不同土壤样品的理化性质差异,分析龙门山地震带土壤细菌多样性。结果表明,不同的土壤样品其理化性质存在着明显的差异,三种植被类型的土壤(杂木...采用16S r DNA变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术,结合不同土壤样品的理化性质差异,分析龙门山地震带土壤细菌多样性。结果表明,不同的土壤样品其理化性质存在着明显的差异,三种植被类型的土壤(杂木林、竹林和松树林)中,杂木林的土壤pH值和全氮含量最高,竹林最低;而土壤碱解氮、速效磷、速效钾和有机质含量则是杂木林比竹林高,松树林最低。对DGGE优势条带测序分析表明,回收的11个优势条带(条带A^K)中,条带A、C、D、F、G和H属于变形菌门,条带E、J和K属于酸杆菌门,条带B属于放线菌门,条带I属于装甲菌门,变形菌门占细菌总类群的54.55%,说明龙门山地震带土壤优势菌群为变形菌门细菌。细菌群落多样性与土壤理化性质相关性的统计分析结果显示,影响细菌群落多样性的主要环境因子在杂木林土壤中为速效钾(r=0.80,P>0.05),竹林为有机质(r=0.97,P>0.05),松树林则是pH值(r=0.35,P>0.05),说明龙门山地震带不同植被类型土壤中的细菌群落对土壤理化性质的需求不同。由于地震能够破坏土壤结构,改变土壤理化性质,从而导致土壤细菌群落多样性发生改变,因此,研究龙门山地震带土壤细菌多样性为震后灾区重建工作和维持龙门山地震带生态系统的可持续性提供了科学依据。展开更多
The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and...The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.展开更多
In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Cru...In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Crustal Movement Observation Network of China. The following issues are discussed. First, the strain fields of the Longmeushan fault zone located at the epicenter show slow accumulation, because of the tectonic dynamics process subjected to the eastward movement of the Bayan Har block. Second, the different movements between the Longmenshan fault and South China block are smaller than the errors of GPS observation. Third, the high value of compressive strain (2004 - 2007) is located at the epicenter, which shows that the local squeezing action is stronger than before. Fourth, the data from GPS reference stations in the Chinese Mainland show that crustal shortening is faster than before in the north-eastern direction, which is part of the background of the local tectonic dynamics increase in the Longmenshan fault zone.展开更多
In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displac...In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.展开更多
During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near t...During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus, in this paper, the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan MsS. 0 earthquake, 2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake, probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake, the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.展开更多
The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main...The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.展开更多
Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery ...Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.展开更多
文摘采用BIOLOG-ECO (Ecology Plate,ECO)技术,探讨龙门山地震带——银厂沟地区杂木林、竹林和松树林3种植被类型对土壤微生物群落多样性的影响.结果表明,随着培养时间的延长,土壤微生物群落的平均颜色变化率(Average Well Color Development,AWCD)均呈"S"型曲线增长,但3种植被类型土壤的AWCD值在增长速率和最大值方面存在一定的差异性;碳水化合物类、氨基酸类、醇类和酯类碳源是土壤微生物群落主要利用的碳源类型;当培养0~144 h时,竹林微生物群落的多样性最高,其次是杂木林,松树林最低,当培养144~240 h时,杂木林微生物群落的多样性高于竹林,松树林最低.研究结果说明植被类型可以影响其土壤微生物群落的多样性,同时也为龙门山地震带土壤生态系统的恢复和重建提供了科学依据.
文摘采用16S r DNA变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术,结合不同土壤样品的理化性质差异,分析龙门山地震带土壤细菌多样性。结果表明,不同的土壤样品其理化性质存在着明显的差异,三种植被类型的土壤(杂木林、竹林和松树林)中,杂木林的土壤pH值和全氮含量最高,竹林最低;而土壤碱解氮、速效磷、速效钾和有机质含量则是杂木林比竹林高,松树林最低。对DGGE优势条带测序分析表明,回收的11个优势条带(条带A^K)中,条带A、C、D、F、G和H属于变形菌门,条带E、J和K属于酸杆菌门,条带B属于放线菌门,条带I属于装甲菌门,变形菌门占细菌总类群的54.55%,说明龙门山地震带土壤优势菌群为变形菌门细菌。细菌群落多样性与土壤理化性质相关性的统计分析结果显示,影响细菌群落多样性的主要环境因子在杂木林土壤中为速效钾(r=0.80,P>0.05),竹林为有机质(r=0.97,P>0.05),松树林则是pH值(r=0.35,P>0.05),说明龙门山地震带不同植被类型土壤中的细菌群落对土壤理化性质的需求不同。由于地震能够破坏土壤结构,改变土壤理化性质,从而导致土壤细菌群落多样性发生改变,因此,研究龙门山地震带土壤细菌多样性为震后灾区重建工作和维持龙门山地震带生态系统的可持续性提供了科学依据。
基金funded by the National Natural Science Foundation of China(Grant No.41001253)Chinese Postdoctoral Science Foundation(Grant No.2012M521717)National Science and Technology Major Project(Grant No.03-Y30B069001-13/15)
文摘The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.
基金sponsored by the National Key Science and Technology R&D Program (2006BAC01B02-02-02)and National Natural Science Foundation of China(40674010)
文摘In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Crustal Movement Observation Network of China. The following issues are discussed. First, the strain fields of the Longmeushan fault zone located at the epicenter show slow accumulation, because of the tectonic dynamics process subjected to the eastward movement of the Bayan Har block. Second, the different movements between the Longmenshan fault and South China block are smaller than the errors of GPS observation. Third, the high value of compressive strain (2004 - 2007) is located at the epicenter, which shows that the local squeezing action is stronger than before. Fourth, the data from GPS reference stations in the Chinese Mainland show that crustal shortening is faster than before in the north-eastern direction, which is part of the background of the local tectonic dynamics increase in the Longmenshan fault zone.
基金sponsored by the Director Fund of Institute of Seismology,China Earthquake Administration(IS201526240)Data Sharing Special Project of the Ministry of Science and Technology,the People's Republic of China(IS20135065)
文摘In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.
文摘During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus, in this paper, the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan MsS. 0 earthquake, 2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake, probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake, the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.
基金sponsored by the Special Earthquake Research Program(20070851)National Key Basic Research Development Planning grogram(2004CB418401)+1 种基金Basic Science Research Professional of Institute of Crustal Dynamics (2008)National Science and Technology Support Program(2006BAC13B01 -0202),China
文摘The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.
基金jointly supported by National Science Foundation of China(41302171)Active Fault Exploration in China(60112304)Basic Scientific Research Funds of China Earthquake Administration(2014IES0401,2012IES010303)
文摘Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.