To study the stereostructure by X-ray and the technology of extracting acankoreanogenin from the leaves of Acanthopanax graeilistylus W. W. Smith (AGS), the crystal structure was measured with a Bruker APEX-Ⅱ area-...To study the stereostructure by X-ray and the technology of extracting acankoreanogenin from the leaves of Acanthopanax graeilistylus W. W. Smith (AGS), the crystal structure was measured with a Bruker APEX-Ⅱ area-detector diffractometer instrument and the technology of extracting in combination hydrolysis in situ (ECHS) was compared with these of traditional methods. The crystal belongs to the monoclinic system, space group P2b with unit cell parameters: a=(8.3652±0.0006) nm, b=(24.721±0.002) nm, and c=(14.5587±0.0011) nm, α=90°, β=97.850 (4) °, γ=90 °, V=2982.51 nm3, Dc= 1.179 mg/m3, and the molecular number (Z) of elementary structures was 2. The comparisons show that the extraction rate of acankoreanogenin with ECHS methods is much higher than that of traditional methods. Then, central composite design-response surface methodology (CCD-RSM) was adopted for optimizing the extraction rate of ECHS methods. The optimized values of extraction parameters are as follows: for the for extraction process of acid hydrolysis are that extraction time 110.8 min, solvent-herb ratio 11.5 and acid content 5.25%; the best extraction process of basic hydrolysis are that extract time 120 min, solvent-herb ratio 8.7 and the alkali content 8.79%. Finally, the extracts were purified with decolorizing carbon after alkali solution and acid-isolation and purity of acankoreanogenin was 98.7%.展开更多
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most...Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most of the ROX is excreted into the manure, causing arsenic contamination in wastewater. The arsenic compounds are toxic to microorganisms, but the influence of continuous ROX loading on upflow anaerobic sludge blanket (UASB) reactor is still unknown. In this study, the impact of ROX and its degradation products on the performance of the UASB reactor and the degradation and speciation of ROX in the reactor were investigated. The UASB reactor (hydraulic retention time: 1.75 d) was operated using synthetic wastewater supplemented with ROX for a period of 260 days. With continuous ROX addition at 25.0 mg.L-1, severe inhibition to methanogenic activity occurred after 87 days operation accompanied with an accumulation of volatile fatty acids (VFAs) and a decline in pH. The decrease of added ROX concentration to 13.2 mg.L-1 did not mediate the inhibition. As(III), As (V), MMA(V), DMA(V), HAPA and an unknown arsenic compound were detected in the reactor, and a possible biotransformation pathway of ROX was proposed. Mass balance analysis of arsenic indicated that 60%-70% of the arsenic was discharged into the effluent, and 30%-40% was precipitated in the reactor. The results from this study suggest that we need to pay attention to the stability in the UASB reactors treating organoarsenic-contaminated manure and wastewater, and the effluent and sludge from the reactor tO avoid diffusion of arsenic contamination.展开更多
基金Project(11JJ2042)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the "Twelfth Five-Year" Key Discipline of Hunan University of Chinese Medicine-Pharmaceutical Analysis Science,China+1 种基金Project(11K048)supported by the Innovation Platform and Open Foundation Program of Higher Colleges of Hunan Province,ChinaProject(K1207010-21)supported by the Changsha City Science and Technology Bureau Key Projects,China
文摘To study the stereostructure by X-ray and the technology of extracting acankoreanogenin from the leaves of Acanthopanax graeilistylus W. W. Smith (AGS), the crystal structure was measured with a Bruker APEX-Ⅱ area-detector diffractometer instrument and the technology of extracting in combination hydrolysis in situ (ECHS) was compared with these of traditional methods. The crystal belongs to the monoclinic system, space group P2b with unit cell parameters: a=(8.3652±0.0006) nm, b=(24.721±0.002) nm, and c=(14.5587±0.0011) nm, α=90°, β=97.850 (4) °, γ=90 °, V=2982.51 nm3, Dc= 1.179 mg/m3, and the molecular number (Z) of elementary structures was 2. The comparisons show that the extraction rate of acankoreanogenin with ECHS methods is much higher than that of traditional methods. Then, central composite design-response surface methodology (CCD-RSM) was adopted for optimizing the extraction rate of ECHS methods. The optimized values of extraction parameters are as follows: for the for extraction process of acid hydrolysis are that extraction time 110.8 min, solvent-herb ratio 11.5 and acid content 5.25%; the best extraction process of basic hydrolysis are that extract time 120 min, solvent-herb ratio 8.7 and the alkali content 8.79%. Finally, the extracts were purified with decolorizing carbon after alkali solution and acid-isolation and purity of acankoreanogenin was 98.7%.
基金Acknowledgements This research was partially supported by the National Science Foundation of China (Grant Nos.51578205 and 51538012), the Fundamental Research Funds for the Central Universities (No. JZ2016HGTB0722), and the Program for Cultivating Excellent Talents in Beijing (No. 2013D002020000001).
文摘Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) has been widely used for decades as an organoarsenic feed additive to control intestinal parasites and improve feed efficiency in animal production. However, most of the ROX is excreted into the manure, causing arsenic contamination in wastewater. The arsenic compounds are toxic to microorganisms, but the influence of continuous ROX loading on upflow anaerobic sludge blanket (UASB) reactor is still unknown. In this study, the impact of ROX and its degradation products on the performance of the UASB reactor and the degradation and speciation of ROX in the reactor were investigated. The UASB reactor (hydraulic retention time: 1.75 d) was operated using synthetic wastewater supplemented with ROX for a period of 260 days. With continuous ROX addition at 25.0 mg.L-1, severe inhibition to methanogenic activity occurred after 87 days operation accompanied with an accumulation of volatile fatty acids (VFAs) and a decline in pH. The decrease of added ROX concentration to 13.2 mg.L-1 did not mediate the inhibition. As(III), As (V), MMA(V), DMA(V), HAPA and an unknown arsenic compound were detected in the reactor, and a possible biotransformation pathway of ROX was proposed. Mass balance analysis of arsenic indicated that 60%-70% of the arsenic was discharged into the effluent, and 30%-40% was precipitated in the reactor. The results from this study suggest that we need to pay attention to the stability in the UASB reactors treating organoarsenic-contaminated manure and wastewater, and the effluent and sludge from the reactor tO avoid diffusion of arsenic contamination.