Objective: Mitral valve disease tends to be treated with anterolateral minithoracotomy (ALMT) rather than median stemotomy (MS), as ALMT uses progressively smaller incisions to promote better cosmetic outcomes. T...Objective: Mitral valve disease tends to be treated with anterolateral minithoracotomy (ALMT) rather than median stemotomy (MS), as ALMT uses progressively smaller incisions to promote better cosmetic outcomes. This meta-analysis quantifies the effects of ALMT on surgical parameters and post-operative outcomes compared with MS. Methods: One randomized controlled study and four case-control studies, published in English from January 1996 to January 2013, were identified and evaluated. Results: ALMT showed a significantly longer cardiopulmonary bypass time (P=0.001) and aortic cross-clamp time (P=0.05) compared with MS. However, the benefits of ALMT were evident as demonstrated by a shorter length of hospital stay (P〈0.00001). According to operative complications, the onset of new arrhythmias following ALMT decreased significantly as compared with MS (P=0.05); however, the incidence of peri-operative mortality (P=0.62), re-operation for bleeding (P=0.37), neurologic events (P=0.77), myocardial infarction (P=0.84), gastrointestinal complications (P=0.89), and renal insufficiency (P=0.67) were similar to these of MS. Long-term follow-up data were also examined, and revealed equivalent survival and freedom from mitral valve events. Conclusions: Current clinical data suggest that ALMT is a safe and effective alternative to the conventional approach and is associated with better short-term outcomes and a trend towards longer survival.展开更多
As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (AI) toxicity in acid soils prevalent in the tropics and sub-tr...As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (AI) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by AI. In this review of plant AI signaling, we begin by summarizing the understanding of physiological mechanisms of AI resistance, which first led researchers to realize that AI stress induces gene expression and modifies protein function during the activation of AI resistance responses. Subsequently, an overview of AI resistance genes and their function provides verification that AI induction of gene expression plays a major role in AI resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcrip- tional activation of resistance genes has led to the identifica- tion of several transcription factors as well as cis-elements in the promoters of AI resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of AI resistance proteins is addressed, where recent research has shown that AI can both directly bind to and alter activity of certain organic acid transporters, and also influence AI resistance proteins indirectly, via protein phosphorylation.展开更多
文摘Objective: Mitral valve disease tends to be treated with anterolateral minithoracotomy (ALMT) rather than median stemotomy (MS), as ALMT uses progressively smaller incisions to promote better cosmetic outcomes. This meta-analysis quantifies the effects of ALMT on surgical parameters and post-operative outcomes compared with MS. Methods: One randomized controlled study and four case-control studies, published in English from January 1996 to January 2013, were identified and evaluated. Results: ALMT showed a significantly longer cardiopulmonary bypass time (P=0.001) and aortic cross-clamp time (P=0.05) compared with MS. However, the benefits of ALMT were evident as demonstrated by a shorter length of hospital stay (P〈0.00001). According to operative complications, the onset of new arrhythmias following ALMT decreased significantly as compared with MS (P=0.05); however, the incidence of peri-operative mortality (P=0.62), re-operation for bleeding (P=0.37), neurologic events (P=0.77), myocardial infarction (P=0.84), gastrointestinal complications (P=0.89), and renal insufficiency (P=0.67) were similar to these of MS. Long-term follow-up data were also examined, and revealed equivalent survival and freedom from mitral valve events. Conclusions: Current clinical data suggest that ALMT is a safe and effective alternative to the conventional approach and is associated with better short-term outcomes and a trend towards longer survival.
文摘As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (AI) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by AI. In this review of plant AI signaling, we begin by summarizing the understanding of physiological mechanisms of AI resistance, which first led researchers to realize that AI stress induces gene expression and modifies protein function during the activation of AI resistance responses. Subsequently, an overview of AI resistance genes and their function provides verification that AI induction of gene expression plays a major role in AI resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcrip- tional activation of resistance genes has led to the identifica- tion of several transcription factors as well as cis-elements in the promoters of AI resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of AI resistance proteins is addressed, where recent research has shown that AI can both directly bind to and alter activity of certain organic acid transporters, and also influence AI resistance proteins indirectly, via protein phosphorylation.