在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资...在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。展开更多
It is more difficult to retrieve land surface temperature(LST) from passive microwave remote sensing data than from thermal remote sensing data, because the emissivities in the passive microwave band can change more e...It is more difficult to retrieve land surface temperature(LST) from passive microwave remote sensing data than from thermal remote sensing data, because the emissivities in the passive microwave band can change more easily than those in the thermal infrared band. Thus, it is very difficult to build a stable relationship. Passive microwave band emissivities are greatly influenced by the soil moisture, which varies with time. This makes it difficult to develop a general physical algorithm. This paper proposes a method to utilize multiple-satellite, sensors and resolution coupled with a deep dynamic learning neural network to retrieve the land surface temperature from images acquired by the Advanced Microwave Scanning Radiometer 2(AMSR2), a sensor that is similar to the Advanced Microwave Scanning Radiometer Earth Observing System(AMSR-E). The AMSR-E and MODIS sensors are located aboard the Aqua satellite. The MODIS LST product is used as the ground truth data to overcome the difficulties in obtaining large scale land surface temperature data. The mean and standard deviation of the retrieval error are approximately 1.4° and 1.9° when five frequencies(ten channels, 10.7, 18.7, 23.8, 36.5, 89 V/H GHz) are used. This method can effectively eliminate the influences of the soil moisture, roughness, atmosphere and various other factors. An analysis of the application of this method to the retrieval of land surface temperature from AMSR2 data indicates that the method is feasible. The accuracy is approximately 1.8° through a comparison between the retrieval results with ground measurement data from meteorological stations.展开更多
Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly ...Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multi-decadal time scales. While?in-situ?measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer-Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission—Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions, accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals, we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed.展开更多
文摘在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。
基金Under the auspices of National Natural Science Foundation of China(No.41571427)National Key Project of China(No.2016YFC0500203)Open Fund of State Key Laboratory of Remote Sensing Science(No.OFSLRSS 201515)
文摘It is more difficult to retrieve land surface temperature(LST) from passive microwave remote sensing data than from thermal remote sensing data, because the emissivities in the passive microwave band can change more easily than those in the thermal infrared band. Thus, it is very difficult to build a stable relationship. Passive microwave band emissivities are greatly influenced by the soil moisture, which varies with time. This makes it difficult to develop a general physical algorithm. This paper proposes a method to utilize multiple-satellite, sensors and resolution coupled with a deep dynamic learning neural network to retrieve the land surface temperature from images acquired by the Advanced Microwave Scanning Radiometer 2(AMSR2), a sensor that is similar to the Advanced Microwave Scanning Radiometer Earth Observing System(AMSR-E). The AMSR-E and MODIS sensors are located aboard the Aqua satellite. The MODIS LST product is used as the ground truth data to overcome the difficulties in obtaining large scale land surface temperature data. The mean and standard deviation of the retrieval error are approximately 1.4° and 1.9° when five frequencies(ten channels, 10.7, 18.7, 23.8, 36.5, 89 V/H GHz) are used. This method can effectively eliminate the influences of the soil moisture, roughness, atmosphere and various other factors. An analysis of the application of this method to the retrieval of land surface temperature from AMSR2 data indicates that the method is feasible. The accuracy is approximately 1.8° through a comparison between the retrieval results with ground measurement data from meteorological stations.
文摘Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multi-decadal time scales. While?in-situ?measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer-Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission—Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions, accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals, we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed.