A catalogue of type II bursts and the associated coronal mass ejections (CMEs) observed by the solar and heliospheric observatory (SOHO) mission is used to select the twenty three CMEs events with CME speed equal ...A catalogue of type II bursts and the associated coronal mass ejections (CMEs) observed by the solar and heliospheric observatory (SOHO) mission is used to select the twenty three CMEs events with CME speed equal to and less than 450 km/sec (i.e., less than and equal to the average solar wind speed) during 1997-2008. Our observational results clearly indicate that even slow speed CMEs are capable to produce the cosmic ray and geomagnetic disturbances on day to day basis. The depression in cosmic ray intensity is larger three days after the arrival of the CMEs along with the maximum disturbance in geomagnetic activity on the same day (i.e., after three days from the arrival of CMEs). Fluctuations in cosmic ray intensity and the geomagnetic activity are also observed before the arrival of the CMEs.展开更多
To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 1...To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 10 MeV(I10), E 〉 30 MeV(I30) and E 〉 50 MeV(I50) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I10, I30 and I50 are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I10, I30 and I50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I10, but SXR peak flux makes no additional contribution. For E 〉 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I30, and the CME shock makes a small contribution to I30, but SXR peak flux makes no additional contribution. For E 〉 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 〈 30 MeV protons. However, flares are not only effective accelerators for E 〈 30 MeV protons, but also for E 〉 30 MeV protons, and E 〉 30 MeV protons may be mainly accelerated by concurrent flares.展开更多
To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, ...To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, and coronal mass ejection(CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and I100 in the three longitudinal areas are0.28±0.21, 0.35±0.21 and 0.04±0.30 respectively. The classical correlation coefficients between I100 and SXR peak flux in the three longitudinal areas are 0.48±0.17, 0.72±0.13 and 0.02±0.30 respectively, while the correlation coefficients between I100 and SXR fluence in the three longitudinal areas are 0.25±0.21, 0.84±0.07 and 0.10±0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region(W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.展开更多
Recently, S. W. Kahler studied the timescales of solar energetic particle (SEP) events asso- ciated with coronal mass ejections (CMEs) from analysis of spacecraft data. They obtained different timescales for SEP e...Recently, S. W. Kahler studied the timescales of solar energetic particle (SEP) events asso- ciated with coronal mass ejections (CMEs) from analysis of spacecraft data. They obtained different timescales for SEP events, such as TO, the onset time from CME launch to SEP onset, TR, the rise time from onset to half the peak intensity (0.5/p), and TD, the duration of the SEP intensity above 0.5Ip. In this work, we solve the transport equation for SEPs considering interplanetary coronal mass ejection (ICME) shocks as energetic particle sources. With our modeling assumptions, our simulations show similar results to Kahler's analysis of spacecraft data, that the weighted average of TD increases with both CME speed and width. Moreover, from our simulation results, we suggest TD is directly dependent on CME speed, but not dependent on CME width, which were not found in the analysis of observational data.展开更多
Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is n...Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r - 0.79) between the hard X-ray (HXR) spectral index (before flarepeak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r - 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r - 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics.展开更多
The cyclical behaviors of sunspots, flares and coronal mass ejections (CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle (SC) 24 are compared, for the first time, with those of SC...The cyclical behaviors of sunspots, flares and coronal mass ejections (CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle (SC) 24 are compared, for the first time, with those of SC 23 from 1996 November to 2001 April. The results are summarized below. (i) During the maximum phase, the number of sunspots in SC 24 is significantly smaller than that for SC 23 and the number of flares in SC 24 is comparable to that of SC 23. (ii) The number of CMEs in SC 24 is larger than that in SC 23 and the speed of CMEs in SC 24 is smaller than that of SC 23 during the maximum phase. We individually survey all the CMEs (1647 CMEs) from 2010 June to 2011 June. A total of 161 CMEs associated with so- lar surface activity events can be identified. About 45% of CMEs are associated with quiescent prominence eruptions, 27% of CMEs only with solar flares, 19% of CMEs with both active-region prominence eruptions and solar flares, and 9% of CMEs only with active-region prominence eruptions. Comparing the association of the CMEs and their source regions in SC 24 with that in SC 23, we notice that the characteristics of source regions for CMEs during SC 24 may be different from those of SC 23.展开更多
We analyzed the speed (v) distributions of 11584 coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliospheric Observatory (SOHO/LASCO) in...We analyzed the speed (v) distributions of 11584 coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliospheric Observatory (SOHO/LASCO) in cycle 23 from 1996 to 2006. We find that the speed distributions for high-latitude (HL) and low-latitude (LL) CME events are nearly identical and to a good approximation they can be fitted with a lognormal distribution. This finding implies that statistically the same driving mechanism of a nonlinear nature is acting in both HL and LL CME events, and CMEs are intrinsically associated with the source's magnetic structure on large spatial scales. Statistically, the HL CMEs are slightly slower than the LL CMEs. For HL and LL CME events respectively, the speed distributions for accelerating and decelerating events are nearly identical and also to a good approximation they can be both fitted with a lognormal distribution, thus supplementing the results obtained by Yurchyshyn et al.展开更多
Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two type...Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two types of CMEs. One is the FL type associated only with flares, while the other is the intermediate type associated with both filament eruptions and flares. It is found that the velocities of the FL type CMEs are strongly correlated with both the peak and the time-integrated X-ray fluxes of the associated flares. However, the correlations between the intermediate type CME velocities and the corre- sponding two parameters are poor. It is also found that the correlation between the CME velocities and the peak X-ray fluxes is stronger than that between the CME velocities and the time-integrated X-ray fluxes of the associated flares.展开更多
Observations indicate that solar coronal mass ejections (CMEs) are closely associated with reconnection-favored flux emergence, which was explained in the emerging flux trigger mechanism for CMEs by Chen & Shibata ...Observations indicate that solar coronal mass ejections (CMEs) are closely associated with reconnection-favored flux emergence, which was explained in the emerging flux trigger mechanism for CMEs by Chen & Shibata based on numerical simulations. We present a parametric survey of the triggering agent: its polarity orientation, position, and the amount of the unsigned flux. The results suggest that whether a CME can be triggered depends on both the amount and location of the emerging flux, in addition to its polarity orientation. A diagram is presented to show the eruption and non-eruption regimes in the parameter space. The work is aimed at providing useful information for the space weather forecast.展开更多
We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Mi...We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The eruption involved in the disappearance of an Ha filament can be clearly identified in EIT 195A difference images. Two flare-like EUV ribbons and two obvious coronal dimming regions were formed. The two dimming regions had a similar appearance in lines formed in temperature range 6×10^4 K to several 10^6 K. They were located in regions of opposite magnetic polarities near the two ends of the eruptive filament. No significant X-ray or Hα flare was recorded associated with the eruption and no obvious photospheric magnetic activity was detected around the eruptive region, and particularly below the coronal dimming regions. The above surface activities were closely associated with a partial halo-type coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on the SOHO. In terms of the magnetic flux rope model of CMEs, we explained these multiple observations as an integral process of largescale rearrangement of coronal magnetic field initiated by the filament eruption, in which the dimming regions marked the evacuated feet of the flux rope.展开更多
We investigate the cyclic evolutionary behavior of CME accelerations for accelerating and decelerating CME events in cycle 23 from 1997 January to 2007 December. It is found that the absolute values of semiannual mean...We investigate the cyclic evolutionary behavior of CME accelerations for accelerating and decelerating CME events in cycle 23 from 1997 January to 2007 December. It is found that the absolute values of semiannual mean accelerations of both accelerating and decelerating CME events roughly wax and wane in a cycle, delaying the sunspot cycle in time phase. We also investigate the semiannual number of CMEs with positive and neg- ative acceleration and find that there are more decelerating CME events than accelerating CME events during the maximum period of a cycle (about three years), but there are more accelerating CME events than decelerating CME events during the rest of the time interval of the cycle. Our results seem to suggest that the different driving mechanisms may be acting accelerate and decelerate CME events; for accelerating CME events, the propelling force (Fp) statistically seems to play a significant role in pushing CMEs outward; for decelerating CME events, the drag (Fd) statistically seems to play a more effective role in determining CME kinematic evolution in the outer corona. During the maximum period of a cycle, because of the V^2 dependence, Fd is generally stronger; because of the magnetic field dependence, Fp is also generally stronger. Thus, the absolute values of both the negative and positive accelerations are generally larger during that time. Because of the V^2 dependence, Fd may be more effective during the maximum period of a cycle. Hence, there are more decelerating CME events than accelerating CME events during that time. During the minimum time interval of a cycle, CMEs have relatively small speeds, and Fp may be more effective. Therefore, there are more accelerating CME events than decelerating CME events during that time.展开更多
Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational e...Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral "breaks" by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy "tails," which can potentially exceed the "break" energy range. However, we have not found the highest energy "tails" beyond the "break" energy range, but instead find that the highest energy "tails" reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral "cut off" in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral "break" property.展开更多
This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X- ray. The Ha and EUV images indicate that the CME sta...This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X- ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 Re above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.展开更多
The relationship between the velocity of CMEs and the plasma temperature of the associated X-ray solar flares is investigated. The velocity of CMEs increases with plasma temperature (R = 0.82) and photon index below...The relationship between the velocity of CMEs and the plasma temperature of the associated X-ray solar flares is investigated. The velocity of CMEs increases with plasma temperature (R = 0.82) and photon index below the break energy (R = 0.60) of X-ray flares. The heating of the coronal plasma appears to be significant with respect to the kinetics of a CME from the reconnection region where the flare also occurs. We propose that the initiation and velocity of CMEs perhaps depend upon the dominant process of conversion of the magnetic field energy of the active region to heating/accelerating the coronal plasma in the reconnected loops. Results show that a flare and the associated CME are two components of one energy release system, perhaps, magnetic field free energy.展开更多
A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on2004 December 1. The data exhibited various patterns of plasma...A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated whitelight, Hα, extreme ultraviolet light, and soft and hard X-rays were also studied.展开更多
In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive ...In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive shock acceleration is an efficient mechanism for particle acceleration. For investigating the shock structure, the energy injection and energy spectrum ofa CME-driven shock, we perform a dynamical Monte Carlo simulation of the CME-driven shock that occurred on 2006 December 14 using an anisotropic scattering law. The simulated results of the shock's fine structure, par- ticle injection, and energy spectrum are presented. We find that our simulation results give a good fit to the observations from multiple spacecraft.展开更多
Owing to the largely improved facilities and working conditions, solar physics research in China has recently shown marked development. This paper reports on the recent progress of solar physics research in China'...Owing to the largely improved facilities and working conditions, solar physics research in China has recently shown marked development. This paper reports on the recent progress of solar physics research in China's Mainland, mainly focusing on several hot issues, including instrumentations, magnetic field observations and research, solar flares, filaments and their eruptions, coronal mass ejections and related processes, as well as active regions and the corona, small-scale phenomena, solar activity and its predictions. A vision of the future is also described.展开更多
According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, th...According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data. The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.展开更多
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament...We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.展开更多
With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity a...With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles"). We use a semi-automatic method to investigate the pertur- bation profiles of coronal waves. The location and amplitude of the coronal waves are calculated over a 30~ sector on the sphere, where the wave signal is strongest. The position with the strongest perturbation at each time is considered as the location of the wave front. In all four events, the wave velocities vary with time for most of their lifetime, up to 15 rain, while in the event observed by the Atmospheric Imaging Assembly there is at, additional early phase with a much higher velocity. The velocity varies greatly between different waves from 216 to 440 km s-1. The velocity of the two waves initially increases, subsequently decreases, and then increases again. Two other waves show a deceleration followed by an acceleration. Three categories of am- plitude evolution of global coronal waves are found for the four events. The first is that the amplitude only shows a decrease. The second is that the amplitude initially increases and then decreases, and the third is that the amplitude shows an orderly in- crease, a decrease, an increase again and then a decrease. All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away, probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.展开更多
文摘A catalogue of type II bursts and the associated coronal mass ejections (CMEs) observed by the solar and heliospheric observatory (SOHO) mission is used to select the twenty three CMEs events with CME speed equal to and less than 450 km/sec (i.e., less than and equal to the average solar wind speed) during 1997-2008. Our observational results clearly indicate that even slow speed CMEs are capable to produce the cosmic ray and geomagnetic disturbances on day to day basis. The depression in cosmic ray intensity is larger three days after the arrival of the CMEs along with the maximum disturbance in geomagnetic activity on the same day (i.e., after three days from the arrival of CMEs). Fluctuations in cosmic ray intensity and the geomagnetic activity are also observed before the arrival of the CMEs.
基金funded by the National Basic Research Program of China (973 Program,Grants 2012CB957801 and 2014CB744203)the National Natural Science Foundation of China (Grant Nos.41074132,41274193,41474166,41304144,11303017 and 11533005)the National Standard Research Program (Grant 200710123)
文摘To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 10 MeV(I10), E 〉 30 MeV(I30) and E 〉 50 MeV(I50) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I10, I30 and I50 are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I10, I30 and I50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I10, but SXR peak flux makes no additional contribution. For E 〉 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I30, and the CME shock makes a small contribution to I30, but SXR peak flux makes no additional contribution. For E 〉 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 〈 30 MeV protons. However, flares are not only effective accelerators for E 〈 30 MeV protons, but also for E 〉 30 MeV protons, and E 〉 30 MeV protons may be mainly accelerated by concurrent flares.
基金jointly funded by the National Basic Research Program of China (973 Program, Grants 2012CB957801 and 2014CB744203)the National Natural Science Foundation of China (Grants 41074132, 41274193, 41474166, 41304144, 11303017 and 11533005)the National Standard Research Program (Grant 200710123)
文摘To investigate the possible solar source of high-energy protons, correlation coefficients between the peak intensities of E ≥ 100 MeV protons, I100, and the peak flux and fluence of solar soft X-ray(SXR) emission, and coronal mass ejection(CME) linear speed in the three longitudinal areas W0-W39, W40-W70 and W71-W90 have been calculated respectively. Classical correlation analysis shows that the correlation coefficients between CME speeds and I100 in the three longitudinal areas are0.28±0.21, 0.35±0.21 and 0.04±0.30 respectively. The classical correlation coefficients between I100 and SXR peak flux in the three longitudinal areas are 0.48±0.17, 0.72±0.13 and 0.02±0.30 respectively, while the correlation coefficients between I100 and SXR fluence in the three longitudinal areas are 0.25±0.21, 0.84±0.07 and 0.10±0.30 respectively. Partial correlation analysis shows that for solar proton events with source location in the well connected region(W40-W70), only SXR fluence can significantly affect the peak intensity of E ≥ 100 MeV protons, but SXR peak flux has little influence on the peak intensities of E ≥ 100 MeV protons; moreover, CME speed has no influence on the peak intensities of E ≥ 100 MeV protons. We conclude that these findings provide statistical evidence that E ≥ 100 MeV protons may be mainly accelerated by concurrent flares.
基金partly supported by the National Natural Science Foundation of China(Grant Nos.41304135,41574172,41374177 and 41125016)the CMA(Grant GYHY201106011)the Specialized Research Fund for State Key Laboratories of China
文摘Recently, S. W. Kahler studied the timescales of solar energetic particle (SEP) events asso- ciated with coronal mass ejections (CMEs) from analysis of spacecraft data. They obtained different timescales for SEP events, such as TO, the onset time from CME launch to SEP onset, TR, the rise time from onset to half the peak intensity (0.5/p), and TD, the duration of the SEP intensity above 0.5Ip. In this work, we solve the transport equation for SEPs considering interplanetary coronal mass ejection (ICME) shocks as energetic particle sources. With our modeling assumptions, our simulations show similar results to Kahler's analysis of spacecraft data, that the weighted average of TD increases with both CME speed and width. Moreover, from our simulation results, we suggest TD is directly dependent on CME speed, but not dependent on CME width, which were not found in the analysis of observational data.
基金the CAWSES-India Program, supported by the Indian Space Research Organization (ISRO), Dept. of Space, Govt. of India
文摘Major solar eruptions (flares, coronal mass ejections (CMEs) and solar energetic particles (SEPs)) strongly influence geospace and space weather. Currently, the mechanism of their influence on space weather is not well understood and requires a detailed study of the energetic relationship among these eruptive phenomena. From this perspective, we investigate 30 flares (observed by RHESSI), followed by weak to strong geomagnetic storms. Spectral analysis of these flares suggests a new power-law relationship (r - 0.79) between the hard X-ray (HXR) spectral index (before flarepeak) and linear speed of the associated CME observed by LASCO/SOHO. For 12 flares which were followed by SEP enhancement near Earth, HXR and SEP spectral analysis reveals a new scaling law (r - 0.9) between the hardest X-ray flare spectrum and the hardest SEP spectrum. Furthermore, a strong correlation is obtained between the linear speed of the CME and the hardest spectrum of the corresponding SEP event (r - 0.96). We propose that the potentially geoeffective flare and associated CME and SEP are well-connected through a possible feedback mechanism, and should be regarded within the framework of a solar eruption. Owing to their space weather effects, these new results will help improve our current understanding of the Sun-Earth relationship, which is a major goal of research programs in heliophysics.
基金Supported by the National Natural Science Foundation of China
文摘The cyclical behaviors of sunspots, flares and coronal mass ejections (CMEs) for 54 months from 2008 November to 2013 April after the onset of Solar Cycle (SC) 24 are compared, for the first time, with those of SC 23 from 1996 November to 2001 April. The results are summarized below. (i) During the maximum phase, the number of sunspots in SC 24 is significantly smaller than that for SC 23 and the number of flares in SC 24 is comparable to that of SC 23. (ii) The number of CMEs in SC 24 is larger than that in SC 23 and the speed of CMEs in SC 24 is smaller than that of SC 23 during the maximum phase. We individually survey all the CMEs (1647 CMEs) from 2010 June to 2011 June. A total of 161 CMEs associated with so- lar surface activity events can be identified. About 45% of CMEs are associated with quiescent prominence eruptions, 27% of CMEs only with solar flares, 19% of CMEs with both active-region prominence eruptions and solar flares, and 9% of CMEs only with active-region prominence eruptions. Comparing the association of the CMEs and their source regions in SC 24 with that in SC 23, we notice that the characteristics of source regions for CMEs during SC 24 may be different from those of SC 23.
基金the National Natural Science Foundation of China
文摘We analyzed the speed (v) distributions of 11584 coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliospheric Observatory (SOHO/LASCO) in cycle 23 from 1996 to 2006. We find that the speed distributions for high-latitude (HL) and low-latitude (LL) CME events are nearly identical and to a good approximation they can be fitted with a lognormal distribution. This finding implies that statistically the same driving mechanism of a nonlinear nature is acting in both HL and LL CME events, and CMEs are intrinsically associated with the source's magnetic structure on large spatial scales. Statistically, the HL CMEs are slightly slower than the LL CMEs. For HL and LL CME events respectively, the speed distributions for accelerating and decelerating events are nearly identical and also to a good approximation they can be both fitted with a lognormal distribution, thus supplementing the results obtained by Yurchyshyn et al.
基金the State Key Laboratory of Space Weather for its support to the Open Research Program
文摘Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two types of CMEs. One is the FL type associated only with flares, while the other is the intermediate type associated with both filament eruptions and flares. It is found that the velocities of the FL type CMEs are strongly correlated with both the peak and the time-integrated X-ray fluxes of the associated flares. However, the correlations between the intermediate type CME velocities and the corre- sponding two parameters are poor. It is also found that the correlation between the CME velocities and the peak X-ray fluxes is stronger than that between the CME velocities and the time-integrated X-ray fluxes of the associated flares.
基金Supported by the National Natural Science Foundation of China.
文摘Observations indicate that solar coronal mass ejections (CMEs) are closely associated with reconnection-favored flux emergence, which was explained in the emerging flux trigger mechanism for CMEs by Chen & Shibata based on numerical simulations. We present a parametric survey of the triggering agent: its polarity orientation, position, and the amount of the unsigned flux. The results suggest that whether a CME can be triggered depends on both the amount and location of the emerging flux, in addition to its polarity orientation. A diagram is presented to show the eruption and non-eruption regimes in the parameter space. The work is aimed at providing useful information for the space weather forecast.
基金Supported by the National Natural Science Foundation of China.
文摘We report a filament eruption near the center of the solar disk on 1999 March 21, in multi-wavelength observations by the Yohkoh Soft X-Ray Telescope (SXT), the Extremeultraviolet Images Telescope (EIT) and the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). The eruption involved in the disappearance of an Ha filament can be clearly identified in EIT 195A difference images. Two flare-like EUV ribbons and two obvious coronal dimming regions were formed. The two dimming regions had a similar appearance in lines formed in temperature range 6×10^4 K to several 10^6 K. They were located in regions of opposite magnetic polarities near the two ends of the eruptive filament. No significant X-ray or Hα flare was recorded associated with the eruption and no obvious photospheric magnetic activity was detected around the eruptive region, and particularly below the coronal dimming regions. The above surface activities were closely associated with a partial halo-type coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on the SOHO. In terms of the magnetic flux rope model of CMEs, we explained these multiple observations as an integral process of largescale rearrangement of coronal magnetic field initiated by the filament eruption, in which the dimming regions marked the evacuated feet of the flux rope.
基金supported by the National Natural Science Foundation of China(Grant Nos.10573034 and 40636031)the National Key Research Science Foundation(2006CB806303)
文摘We investigate the cyclic evolutionary behavior of CME accelerations for accelerating and decelerating CME events in cycle 23 from 1997 January to 2007 December. It is found that the absolute values of semiannual mean accelerations of both accelerating and decelerating CME events roughly wax and wane in a cycle, delaying the sunspot cycle in time phase. We also investigate the semiannual number of CMEs with positive and neg- ative acceleration and find that there are more decelerating CME events than accelerating CME events during the maximum period of a cycle (about three years), but there are more accelerating CME events than decelerating CME events during the rest of the time interval of the cycle. Our results seem to suggest that the different driving mechanisms may be acting accelerate and decelerate CME events; for accelerating CME events, the propelling force (Fp) statistically seems to play a significant role in pushing CMEs outward; for decelerating CME events, the drag (Fd) statistically seems to play a more effective role in determining CME kinematic evolution in the outer corona. During the maximum period of a cycle, because of the V^2 dependence, Fd is generally stronger; because of the magnetic field dependence, Fp is also generally stronger. Thus, the absolute values of both the negative and positive accelerations are generally larger during that time. Because of the V^2 dependence, Fd may be more effective during the maximum period of a cycle. Hence, there are more decelerating CME events than accelerating CME events during that time. During the minimum time interval of a cycle, CMEs have relatively small speeds, and Fp may be more effective. Therefore, there are more accelerating CME events than decelerating CME events during that time.
基金supported by the Xinjiang Natural Science Foundation(No.2014211A069)funded by the Key Laboratory of Solar Activity of NAOC,the Key Laboratory of Modern Astronomy and Astrophysics(Nanjing University)Ministry of Education,and the China Scholarship Council(CSC)
文摘Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral "breaks" by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy "tails," which can potentially exceed the "break" energy range. However, we have not found the highest energy "tails" beyond the "break" energy range, but instead find that the highest energy "tails" reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral "cut off" in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral "break" property.
基金Supported by the National Natural Science Foundation of China.
文摘This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X- ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 Re above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.
文摘The relationship between the velocity of CMEs and the plasma temperature of the associated X-ray solar flares is investigated. The velocity of CMEs increases with plasma temperature (R = 0.82) and photon index below the break energy (R = 0.60) of X-ray flares. The heating of the coronal plasma appears to be significant with respect to the kinetics of a CME from the reconnection region where the flare also occurs. We propose that the initiation and velocity of CMEs perhaps depend upon the dominant process of conversion of the magnetic field energy of the active region to heating/accelerating the coronal plasma in the reconnected loops. Results show that a flare and the associated CME are two components of one energy release system, perhaps, magnetic field free energy.
基金Supported by the National Natural Science Foundation of China
文摘A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated whitelight, Hα, extreme ultraviolet light, and soft and hard X-rays were also studied.
基金supported by the National Natural Science Foundation of China (Grant No. 10921303)the National Basic Research Program of the Ministry of Science and Technology (MOST Grant No. 2011CB 811401)
文摘In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive shock acceleration is an efficient mechanism for particle acceleration. For investigating the shock structure, the energy injection and energy spectrum ofa CME-driven shock, we perform a dynamical Monte Carlo simulation of the CME-driven shock that occurred on 2006 December 14 using an anisotropic scattering law. The simulated results of the shock's fine structure, par- ticle injection, and energy spectrum are presented. We find that our simulation results give a good fit to the observations from multiple spacecraft.
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 10878002, 10610099, 10933003 and 10673004)the National Basic Research Program of China (973 program, 2011CB811402)
文摘Owing to the largely improved facilities and working conditions, solar physics research in China has recently shown marked development. This paper reports on the recent progress of solar physics research in China's Mainland, mainly focusing on several hot issues, including instrumentations, magnetic field observations and research, solar flares, filaments and their eruptions, coronal mass ejections and related processes, as well as active regions and the corona, small-scale phenomena, solar activity and its predictions. A vision of the future is also described.
基金funded by the National Natural Science Foundation of China(Grant Nos.41674166,41074132,41274193 and 41304144)the National Standard Research Program(Grant 200710123)
文摘According to the solar proton data observed by Geostationary Operational Environmental Satellites (GOES), ground-based neutron monitors on Earth and near-relativistic electron data measured by the ACE spacecraft, the onset times of protons with different energies and near-relativistic electrons have been estimated and compared with the time of solar soft and hard X-ray and radio burst data. The results show that first arriving relativistic and non-relativistic protons and electrons may have been accelerated by the concurrent flare. The results also suggest that release times of protons with different energies may be different, and the protons with lower energy may have been released earlier than those with higher energy. Some protons accelerated by concurrent flares may be further accelerated by the shock driven by the associated CME.
基金Supported by the National Natural Science Foundation of China.
文摘We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR 9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament- arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nan^ay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described ex- ample in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40890161,11025315,10921303 and 11003026)the CAS Project KJCX2-YW-T04+1 种基金the National Basic Research Programof China (Grant 2011CB811403)the Young Researcher Grant of the National Astronomical Observatories,Chinese Academy of Sciences
文摘With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO), we analyze in detail the kine- matics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles"). We use a semi-automatic method to investigate the pertur- bation profiles of coronal waves. The location and amplitude of the coronal waves are calculated over a 30~ sector on the sphere, where the wave signal is strongest. The position with the strongest perturbation at each time is considered as the location of the wave front. In all four events, the wave velocities vary with time for most of their lifetime, up to 15 rain, while in the event observed by the Atmospheric Imaging Assembly there is at, additional early phase with a much higher velocity. The velocity varies greatly between different waves from 216 to 440 km s-1. The velocity of the two waves initially increases, subsequently decreases, and then increases again. Two other waves show a deceleration followed by an acceleration. Three categories of am- plitude evolution of global coronal waves are found for the four events. The first is that the amplitude only shows a decrease. The second is that the amplitude initially increases and then decreases, and the third is that the amplitude shows an orderly in- crease, a decrease, an increase again and then a decrease. All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away, probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.