This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for ...This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for the derivation of the fine structure constant with running points of α(t) ≈ 1/(136.9038) at high energy scales, based on electroweak interactions. Through the application of the Ising model, the running point of the elementary charge e at high energy scales is determined, and Coulomb’s law is actually derived from the Yukawa potential. Theoretically, based on S. Weinberg’s electroweak interaction theory, this study unifies the strong and electromagnetic forces by representing them with rYuka, and further advances the reconstruction of the SU(3)C×SU(1)L×U(1)EMframework on the basis of electroweak interaction concepts. In fact, the cosmic fundamental forces can interchange at the mass gap, defined as the Yukawa turning phase at rYuka ≃1.9404 fm, with the SU(3)Diag structural constant fijk on glueballs calculated, estimating a spectrum mass gap of ∆0 > 0.展开更多
The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnet...The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.展开更多
文摘This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for the derivation of the fine structure constant with running points of α(t) ≈ 1/(136.9038) at high energy scales, based on electroweak interactions. Through the application of the Ising model, the running point of the elementary charge e at high energy scales is determined, and Coulomb’s law is actually derived from the Yukawa potential. Theoretically, based on S. Weinberg’s electroweak interaction theory, this study unifies the strong and electromagnetic forces by representing them with rYuka, and further advances the reconstruction of the SU(3)C×SU(1)L×U(1)EMframework on the basis of electroweak interaction concepts. In fact, the cosmic fundamental forces can interchange at the mass gap, defined as the Yukawa turning phase at rYuka ≃1.9404 fm, with the SU(3)Diag structural constant fijk on glueballs calculated, estimating a spectrum mass gap of ∆0 > 0.
文摘The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.
基金The National Natural Science Foundation of China under Grant(10774108) the Special Researcn Foundation for the Doctoral Program of Higher Education under Grant(20050285002)