针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型...针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。展开更多
车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决...车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决的难题.联邦学习采用“数据不动模型动”的方式,为保护用户隐私和实现良好性能提供了可行方案.然而,受限于采集设备、地域环境、个人习惯的差异,多台车辆采集的数据通常表现为非独立同分布(non-independent and identically distributed,non-IID)数据,而传统的联邦学习算法在non-IID数据环境中,其模型收敛速度较慢.针对这一挑战,提出了一种面向non-IID数据的车联网多阶段联邦学习机制,称为FedWO.第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度;第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时采用传输控制策略,减少模型传输带来的通信开销;第3阶段为个性化计算阶段,车辆利用各自的数据进行个性化学习,微调本地模型获得与本地数据更匹配的模型.实验采用了驾驶行为数据集进行实验评估,结果表明相较于传统方法,在non-IID数据场景下,FedWO机制保护了数据隐私,同时提高了算法的准确度.展开更多
为了抵御身份伪造攻击和解决认证效率低的问题,提出了一种基于主从链的跨域身份认证算法(Cross-domain identity Authentication algorithm based on the Master-Slave chain,CAMS)。该算法基于区块链技术利用主从链方式实现了车辆数据...为了抵御身份伪造攻击和解决认证效率低的问题,提出了一种基于主从链的跨域身份认证算法(Cross-domain identity Authentication algorithm based on the Master-Slave chain,CAMS)。该算法基于区块链技术利用主从链方式实现了车辆数据的跨域存储和共享,从而提高了跨域身份认证效率。此外,CAMS算法在跨域认证过程中引入了假名的生成和验证参数。在验证消息之前,进一步验证车辆身份,确保认证身份的匿名性,抵御身份伪造攻击。仿真结果表明,CAMS在计算开销和认证效率方面具有较好的性能。展开更多
文摘针对车联网中高通信需求和高移动性造成的车对车链路(Vehicle to Vehicle,V2V)间的信道冲突及网络效用低下的问题,提出了一种基于并联门控循环单元(Gated Recurrent Unit,GRU)和长短期记忆网络(Long Short-Term Memory,LSTM)的组合模型的车联网信道分配算法。算法以降低V2V链路信道碰撞率和空闲率为目标,将信道分配问题建模为分布式深度强化学习问题,使每条V2V链路作为单个智能体,并通过最大化每回合平均奖励的方式进行集中训练、分布式执行。在训练过程中借助GRU训练周期短和LSTM拟合精度高的组合优势去拟合深度双重Q学习中Q函数,使V2V链路能快速地学习优化信道分配策略,合理地复用车对基础设施(Vehicle to Infrastructure,V2I)链路的信道资源,实现网络效用最大化。仿真结果表明,与单纯使用GRU或者LSTM网络模型的分配算法相比,该算法在收敛速度方面加快了5个训练回合,V2V链路间的信道碰撞率和空闲率降低了约27%,平均成功率提升了约10%。
文摘车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决的难题.联邦学习采用“数据不动模型动”的方式,为保护用户隐私和实现良好性能提供了可行方案.然而,受限于采集设备、地域环境、个人习惯的差异,多台车辆采集的数据通常表现为非独立同分布(non-independent and identically distributed,non-IID)数据,而传统的联邦学习算法在non-IID数据环境中,其模型收敛速度较慢.针对这一挑战,提出了一种面向non-IID数据的车联网多阶段联邦学习机制,称为FedWO.第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度;第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时采用传输控制策略,减少模型传输带来的通信开销;第3阶段为个性化计算阶段,车辆利用各自的数据进行个性化学习,微调本地模型获得与本地数据更匹配的模型.实验采用了驾驶行为数据集进行实验评估,结果表明相较于传统方法,在non-IID数据场景下,FedWO机制保护了数据隐私,同时提高了算法的准确度.
文摘为了抵御身份伪造攻击和解决认证效率低的问题,提出了一种基于主从链的跨域身份认证算法(Cross-domain identity Authentication algorithm based on the Master-Slave chain,CAMS)。该算法基于区块链技术利用主从链方式实现了车辆数据的跨域存储和共享,从而提高了跨域身份认证效率。此外,CAMS算法在跨域认证过程中引入了假名的生成和验证参数。在验证消息之前,进一步验证车辆身份,确保认证身份的匿名性,抵御身份伪造攻击。仿真结果表明,CAMS在计算开销和认证效率方面具有较好的性能。