For the two-parameter inverse Gaussian distribution denoted by IG(μ,A), the authors employ a linear Bayes procedure to estimate the parameters μ and A. The superiority of the proposed linear Bayes estimator (LBE...For the two-parameter inverse Gaussian distribution denoted by IG(μ,A), the authors employ a linear Bayes procedure to estimate the parameters μ and A. The superiority of the proposed linear Bayes estimator (LBE) over both the classical UMVUE and the maximum likelihood estimator (MLE) is established in terms of the mean squared error matrix (MSEM) criterion. Compared with the usual Bayes estimator, which is obtained by an MCMC method, the proposed LBE is simple and easy to use. Some numerical results are presented to verify that the LBE performs well.展开更多
The unique Bayes linear unbiased estimator (Bayes LUE) of estimable functions is derived for the singular linear model. The superiority of Bayes LUE over ordinary best linear unbiased estimator is investigated under m...The unique Bayes linear unbiased estimator (Bayes LUE) of estimable functions is derived for the singular linear model. The superiority of Bayes LUE over ordinary best linear unbiased estimator is investigated under mean square error matrix (MSEM)criterion.展开更多
This paper considers the empirical Bayes (EB) estimation problem for the parameter β of the linear regression model y = Xβ+ ε with ε- N(0, σ^2I) given β. Based on Pitman closeness (PC) criterion and mean ...This paper considers the empirical Bayes (EB) estimation problem for the parameter β of the linear regression model y = Xβ+ ε with ε- N(0, σ^2I) given β. Based on Pitman closeness (PC) criterion and mean square error matrix (MSEM) criterion, we prove the superiority of the EB estimator over the ordinary least square estimator (OLSE).展开更多
基金supported by National Natural Science Foundation of China under Grant No.11371051
文摘For the two-parameter inverse Gaussian distribution denoted by IG(μ,A), the authors employ a linear Bayes procedure to estimate the parameters μ and A. The superiority of the proposed linear Bayes estimator (LBE) over both the classical UMVUE and the maximum likelihood estimator (MLE) is established in terms of the mean squared error matrix (MSEM) criterion. Compared with the usual Bayes estimator, which is obtained by an MCMC method, the proposed LBE is simple and easy to use. Some numerical results are presented to verify that the LBE performs well.
基金This work was supported by the Doctoral Program Foundation of the Institute of High Educationthe Special Foundation of Chinese Academy of Sciences.
文摘The unique Bayes linear unbiased estimator (Bayes LUE) of estimable functions is derived for the singular linear model. The superiority of Bayes LUE over ordinary best linear unbiased estimator is investigated under mean square error matrix (MSEM)criterion.
文摘This paper considers the empirical Bayes (EB) estimation problem for the parameter β of the linear regression model y = Xβ+ ε with ε- N(0, σ^2I) given β. Based on Pitman closeness (PC) criterion and mean square error matrix (MSEM) criterion, we prove the superiority of the EB estimator over the ordinary least square estimator (OLSE).